Vol. 50
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-09-14
A Hybrid Method to Accelerate the Calculation of Two-Dimensional Monostatic Radar Cross Section on PEC Targets
By
Progress In Electromagnetics Research M, Vol. 50, 47-54, 2016
Abstract
This paper proposes a hybrid method to accelerate the calculation of the monostatic radar cross section (RCS) of perfect electric conducting (PEC) targets. In a sense, the proposed method can be considered as a fast adaptive cross approximation (FACA)-based method. The FACA is firstly used to compress the excitation matrix which come from the beforehand defined incident plane waves. It decreases the time and memory on the generation of decomposition form matrices throughout the comparison with the conventional adaptive cross approximation (ACA). Furthermore, the computational complexity of solution is further reduced by using the sparsified ACA (SPACA) algorithm after dividing the target into blocks. Consequently, the proposed method turns out to be efficient and accurate for calculating two-dimensional (2D) monostatic RCS.
Citation
Chao Fei, Xinlei Chen, Yang Zhang, Zhuo Li, and Chang Qing Gu, "A Hybrid Method to Accelerate the Calculation of Two-Dimensional Monostatic Radar Cross Section on PEC Targets," Progress In Electromagnetics Research M, Vol. 50, 47-54, 2016.
doi:10.2528/PIERM16062804
References

1. Zhao, K., M. N. Vouvalis, and J. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Trans. Electromagnetic Compatibility, Vol. 13, No. 4, 763-772, Nov. 2005.

2. Heldring, A., J. M. Rius, J. M. Tanayo, J. Parron, and E. Ubeda, "Multiscale compressed block decomposition for fast direct solution of method of moments linear system," IEEE Trans. Antennas and Propag., Vol. 59, No. 2, 526-536, Feb. 2011.
doi:10.1109/TAP.2010.2096385

3. Tanayo, J. M., A. Heldring, and J. M. Rius, "Multilevel adaptive cross approximation (MLACA)," IEEE Trans. Antennas and Propag., Vol. 59, No. 12, 4600-4608, Dec. 2011.
doi:10.1109/TAP.2011.2165476

4. Heldring, A., J. M. Tanayo, C. Simon, E. Ubeda, and J. M. Rius, "Sparsified adaptive cross approximation algorithm for accelerated method of moments computations," IEEE Trans. Antennas and Propag., Vol. 61, No. 1, 526-536, Jan. 2013.
doi:10.1109/TAP.2012.2215292

5. Chen, X., C. Gu, Z. Niu, and Z. Li, "Fast adaptive cross-sampling scheme for the sparsified adaptive cross approximation," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1061-1064, 2014.
doi:10.1109/LAWP.2014.2328354

6. Chen, X., C. Gu, Z. Li, and Z. Niu, "Sparsified multilevel adaptive cross approximation," IEEE Asia-Pacific Conference on Antennas and Propagation, 971-973, 2014.

7. Chen, X., C. Gu, J. Ding, Z. Li, and Z. Niu, "Multilevel fast adaptive cross-approximation algorithm with characteristic basis functions," IEEE Trans. Antennas and Propag., Vol. 63, No. 9, 3994-4002, Sep. 2015.
doi:10.1109/TAP.2015.2447033

8. Schroder, A., H. D. Bruns, and C. Schuster, "A hybrid approach for rapid computation of two-dimensional monostatic radar cross section problems with the multilevel algorithm," IEEE Trans. Antennas and Propag., Vol. 60, No. 12, Dec. 2012.
doi:10.1109/TAP.2012.2209858

9. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas and Propag., Vol. 30, No. 2, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

10. Michielssen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," IEEE Trans. Antennas and Propag., Vol. 44, No. 8, 1086-1093, Aug. 1996.
doi:10.1109/8.511816