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A Hybrid Method to Accelerate the Calculation of Two-Dimensional
Monostatic Radar Cross Section on PEC Targets

Chao Fei1, *, Xinlei Chen1, 2, Yang Zhang1, Zhuo Li1, 2, and Changqing Gu1

Abstract—This paper proposes a hybrid method to accelerate the calculation of the monostatic radar
cross section (RCS) of perfect electric conducting (PEC) targets. In a sense, the proposed method can
be considered as a fast adaptive cross approximation (FACA)-based method. The FACA is firstly used
to compress the excitation matrix which comes from the beforehand defined incident plane waves. It
decreases the time and memory on decomposing the excitation matrix compared with the conventional
adaptive cross approximation (ACA). Furthermore, the computational complexity of iterative solution
is reduced by using the sparsified ACA (SPACA) algorithm after dividing the target into blocks.
Consequently, the proposed method is efficient for calculating two-dimensional (2D) monostatic RCS.

1. INTRODUCTION

The method of moment (MoM) is an accurate algorithm which has been used popularly to make the
calculation of radar cross section (RCS). In a sense, the two-dimensional (2D) multi-angle monostatic
RCS problems attract the attention for its importance of the military. For these problems, it is very
time consuming for the conventional MoM as it needs to solve the matrix equation repeatedly. At the
same time, the huge dense impedance matrix makes difficulties on each solution when the target is
electrically large.

Fortunately, many fast methods have been proposed to accelerate the iterative solution of the MoM
matrix equation. The adaptive cross approximation (ACA)-based algorithms [1–7] are relatively popular
in recent years. For perfect electric conducting (PEC) targets within 50 wavelengths, the sparsified ACA
(SPACA) algorithm [4, 5], which can be considered as a fast ACA (FACA)-based algorithm [7], is very
efficient. Hence, it is used to accelerate the iterative solution in this paper.

However, the SPACA cannot reduce the number of iterative solutions of the matrix equation. For
monostatic RCS problems, the excitation matrix, which comes from the incident plane waves, has low-
rank property. Thus, in this paper, the FACA [7] is employed to compress the excitation matrix so as
to reduce the number of iterative solutions of the matrix equation. Compared with the conventional
ACA [1, 8], the FACA can save storage and give a more efficient sampling procedure for decomposing
the excitation matrix when dealing with electrically large problems.

The remainder of this paper is organized as follows. In Section 2, the fundamental theory is
introduced. In Section 3, the principles of the FACA and the SPACA are described in detail firstly,
then the method using the FACA to accelerate the analysis of 2D monostatic RCS is introduced. In
Section 4, examples and some discussion are presented so as to validate the efficiency and accuracy of
the proposed method.
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2. ELECTROMAGNETIC THEORY

To analyze the electromagnetic (EM) scattering problem of an arbitrary shaped perfect electric
conducting (PEC) target, the Rao-Wilton-Glisson (RWG) [9] basis function and the surface integral
equation (SIE) are used to expand the induced surface current and describe the relationship between
the divided triangle elements.

An element of the electric field integral equation (EFIE) is expressed as
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where fm(r) is the mth RWG basis function which is considered as the field point, fn(r′) the nth
RWG basis function which is considered as the source point, ∇· (∇′·) the divergence operator on
the field (source) point, k the wave number, η the intrinsic impedance of the free space, and
G(r, r′) = e−jk|r−r′|/(4π |r− r′|) the Green’s function in free space.

An element of the magnetic field integral equation (MFIE) is expressed as
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where ∇ is the gradient of a scalar and n̂m the unit direction vector of the mth basis function.
The element of the general impedance matrix in the combined field integral equation (CFIE) is

calculated as
Zmn = αZE

mn + (1 − α) ηZM
mn, (3)

and α = 0.5 here.
If there are M plane waves which come from different incident angles irradiate the target for a

monostatic RCS problem, the dimension of excitation matrix V is N × M . Here, N is the number of
RWG basis functions.

Finally, the MoM matrix equation is presented as

ZI = V, (4)

where Z ∈ CN×N is a dense impedance matrix, and I ∈ CN×M is the solution matrix which is needed
to calculate the RCS. From Eq. (4), it can be seen that the impedance matrix equation should be solved
M times for the monostatic RCS calculation.

3. ACCELERATED SOLUTION VIA FACA-BASED METHOD

3.1. Principle of FACA

The FACA [7] is a low-rank decomposition method based on the fast adaptive cross sampling (FACS) [5],
which can efficiently find the important columns and rows of a rank-deficient matrix. Thus, the FACA
can provide a more efficient compression of an impedance submatrix between two well-separated blocks
in the MoM than the conventional ACA [1]. Here, the compression of a low-rank matrix M ∈ Cm×n is
set to be an example to describe the FACA as follows.

The FACA is an iterative method. Firstly, sn columns and sn rows are uniformly sampled from M
with the sampling number

sn = 2n · s0. (5)

for the nth iteration. Here, sn is the sampling number of the nth iteration and s0 the initial sampling
value, which is assigned artificially.

Secondly, the elements belong to both the sampled columns and rows which make up a new matrix
Mn (for the nth iteration), and the ACA is used on it.

Mn ≈ UnVn (6)

is the decomposed form acquired by the ACA. Un ∈ Csn×kn , Vn ∈ Ckn×sn , and kn is the effective rank
of Mn.
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Thirdly, the convergence criterion [5]

|kn − kn−1| ≤ β |sn − sn−1| (7)

is judged, where the constant β is set to [0.01, 0.1] usually. If Eq. (7) is met, the iteration terminates.
When the criterion is met, the serial numbers of the sampled columns and rows are saved. With

them, according to the matrix decomposition algorithm (MDA) [10], M can be decomposed into

M ≈ US−1V, (8)

where U ∈ Cm×k, V ∈ Ck×n, and S−1 ∈ Ck×k are the decomposed matrices of the FACA as the
schematic diagram Fig. 1. The parameter k is the final sampling number of the FACA, and it is
assumed that k = 3 in Fig. 1. U-matrix comes from the sampled columns. V-matrix comes from the
sampled rows. S-matrix consists of the elements which belong to both the sampled columns and rows,
and S−1 is the inverse matrix.

Figure 1. The schematic diagram of the FACA with k = 3.

3.2. Compression of Impedance Matrix

The SPACA [4, 5] can be viewed as an improved FACA [7]. It is used in this paper to compress the
impedance matrix of the MoM.

After dividing the target into blocks with the octal tree structure, the near-block pairs and far-
block pairs are classified by the position relationship. Two blocks, which are overlapping or adjacent,
are considered as a near-blocks pair; otherwise, they are a far-block pair. At each level, impedance
matrices of far-block pairs are compressed by the SPACA. For example, Zi,j, the impedance matrix
between the ith block and the jth block, is compressed with the following process.

Firstly, Zi,j is decomposed by the FACA as

Zi,j ≈ ZiZ−1
s ZT

j , (9)

where Zi(Zj) ∈ Ca×s comes from the interaction between all basis functions in the ith (jth) block and
the sampled basis functions in the jth (ith) block. The parameter a is the average number of basis
functions of all blocks, and the parameter s is the sampling number of the FACA.

Then, the ACA-singular value decomposition (ACA-SVD) [2] and the QR decomposition are used
to further compress Zi,j as [5]

Zi,j ≈ AiQ̂iSRQ̂T
j AT

j , (10)

where Ai,Aj are block diagonal matrices. SR ∈ Cr×r is a diagonal matrix, and its nonzero elements
are the singular values of Zi,j. AiQ̂i(AjQ̂j) ∈ Ca×r is the left (right) singular matrix of Zi,j. Here, the
parameter r < s is the effective rank of Zi,j evaluated by the truncated SVD [5].
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3.3. Compression of Voltage Matrix

The SPACA can accelerate the iterative solution of the impedance matrix equation for each excitation.
However, it cannot reduce the number of excitations for the monostatic RCS. In this paper, the
FACA [5, 7] is employed to reduce the number of excitations because the voltage matrix has low-rank
property for monostatic RCS problems. For the right-hand side, the voltage matrix V ∈ CN×M can be
decomposed by the FACA [7] as

V ≈ PD−1Q, (11)

where P ∈ CN×q, Q ∈ Cq×M and D ∈ Cq×q. q is the sampling number of the FACA.
Substituting Eq. (11) into Eq. (4), we have

ZI ≈ PD−1Q. (12)

Thus,
I ≈ (Z−1P)D−1Q = JD−1Q. (13)

In Eq. (13), the following equation needs to be iteratively solved

ZJ = P. (14)

From Eq. (14), it can be seen that the impedance matrix equation only needs to be solved q times,
where q is the effective rank of V and typically much smaller than M . Thus, the computation time of
the monostatic RCS is remarkably reduced with the help of the FACA.

The conventional ACA [1] has been used to speed up the monostatic RCS calculation in [2], in
which the excitation matrix is compressed as

V ≈ UvVv, (15)

where Uv ∈ CN×q and Vv ∈ Cq×M are the ACA decomposed matrices of V. Here, we assume that the
effective ranks evaluated by the FACA and ACA are the same. Similarly, if substituting Eq. (15) into
Eq. (4), the ACA can also cut down the number of iterative solutions of matrix equation.

The disadvantage of the ACA is that both Uv and Vv have to be stored. However, in the FACA,
only P and D−1 need to be stored, and the memory of Q can be saved. We can calculate each column
of Q when it is needed in the RCS calculation process. The computational complexity of the ACA is
O(q2(N + M)) [1]. However, the computational complexity of the FACA is O(q3)+O(q(N + M)) [7],
where O(q3) is the complexity of the FACS and O(q(N +M)) the complexity of generating P and Q (the
LU decomposition of D has been calculated in the FACS process [5]). Thus, another advantage of the
FACA is that it can save the decomposition time of the voltage matrix compared with the conventional
ACA.

4. EXAMPLES AND DISCUSSION

As the efficiency of the SPACA accelerating iterative solution has been validated [4, 5], this section is only
to show the accuracy and efficiency of the FACA when dealing with 2D monostatic RCS problems. For
the following examples, all impedance matrices are compressed by the SPACA. Analysis and discussion
are presented as follows.

4.1. Cube

Without loss of generality, the monostatic RCSs of several cube models are discussed firstly. Sidelength
a of the cubes is a variable, and the efficiency is shown with the increase of a. Models are irradiated
by 300 MHz plane waves which are defined at θ ∈ [0◦, 180◦] and ϕ ∈ [0◦, 360◦) both with step 2◦, where
the number of incident waves is 16380 and the polarization θ̂. The ACA threshold is set to 10−4 and
β = 0.01. The accuracy error of the compressed decomposition of V is calculated by

error =
‖Vsamp − V‖F

‖V‖F

(16)
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where V is the original voltage matrix and Vsamp the decomposition form just as Eq. (11) and Eq. (15).
‖ · ‖F is the Frobenius-norm.

For these models, the sampling number, time and memory on compressing V are listed in Table 1.
We can see that the two methods have similar sampling number and decomposition error. However,
the FACA provides a more efficient decomposition procedure than the conventional ACA. With the
increase of the number of basis functions, the time-reduction and memory-saving are more and more
remarkable.

Table 1. Sampling comparison of the models.

Sampling number Time (s) Memory (MB) Error

a (m) Unknowns ACA FACA ACA FACA ACA FACA ACA FACA

2 8118 367 370 6.07 7.77 67.8 24.0 2.03 × 10−4 2.01 × 10−4

2.5 12690 491 481 11.97 12.11 108.9 48.4 2.05 × 10−4 2.32 × 10−4

3 18342 614 611 18.73 17.09 162.8 88.5 2.25 × 10−4 2.55 × 10−4

3.5 25656 757 740 32.01 24.37 243.0 96.66 2.81 × 10−4 3.46 × 10−4

4.2. Rocket

Then, a more complex target, a 16λ rocket model, as shown in Fig. 2 is analyzed. Incident plane waves
are defined at θ ∈ [0◦, 180◦], ϕ ∈ [0◦, 360◦) both with the step 1◦ and the total number M = 65160. The
plane wave is at 200 MHz with the polarization θ̂. The numerical model exhibits N = 44088 unknowns.

Figure 2. The rocket model.

Table 2. Computation comparison on the rocket model.

ACA FACA

Sampling number 819 810

Time of compressing V (s) 96.5 47.7

Storage of compressed V (MB) 682.6 277.5

Table 2 gives the comparison of the FACA and ACA on compressing V (the ACA threshold is
10−4, β = 0.01 and s0 = 40). It can be seen that the FACA provides a faster decomposition and
requires less memory. The number of iterative solutions of the impedance matrix equation is reduced
from 65160 to 810 by the FACA. It means that the iterative solution time is cut down by a factor of
80. The solution times are also cut even compared to using the ACA. Because the rocket is a rotational
symmetric model, only the monostatic RCSs at ϕ = 0◦ are shown in Fig. 3. Obviously, the RCS curves
have a good match. The relative errors of several ϕ values are presented in Fig. 4. As we can see, the
curves show that the relative errors are mostly below −10 dB. Here, relative error is calculated as

relative error = 10 log10

∣∣∣∣RCSACA − RCSFACA

RCSACA

∣∣∣∣ , (17)

where RCSACA (RCSFACA) is the value of monostatic RCS using ACA (FACA) obtained from any
incident plane waves. The unit of relative error is dB.
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Figure 3. Monostatic RCS of the rocket model at 200 MHz (ϕ = 0◦).

Figure 4. Relative error of the rocket model at 200 MHz.

4.3. Almond

Finally, a 252.3744 mm almond (Fig. 5) at 15 GHz is analyzed. The incident plane waves are defined
at the same angles and polarization as the example II. It has 36225 unknowns, and the comparison is
listed in Table 3.

Figure 5. The almond model

In this example, the ACA threshold is 10−5, β = 0.01 and s0 = 40. Table 3 indicates that the FACA
is faster than the conventional ACA and saves memory. Fig. 6 gives the calculated 2D monostatic RCS.
With time and memory reduction, the relative errors are controlled blow −10 dB mostly as shown in
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Table 3. Computation comparison on the almond model.

ACA FACA

Sampling number 1179 1167

Time of compressing V (s) 166.0 102.1

Storage of compressed V (MB) 912.0 332.9

Figure 6. Monostatic RCS of the PEC almond at 15 GHz. (Unit: dBsm)

Figure 7. Relative error of the PEC almond at 15 GHz. (Unit: dB)

Fig. 7. After the FACA compression, only 1167 excitation vectors need to be solved. Thus, the FACA
can speed up the calculation of the monostatic RCS than the conventional SPACA in which the number
of the right hand vectors is 65160.

5. CONCLUSION

In this paper, a technique combining the SPACA with the FACA is proposed to accelerate solving
2D monostatic RCS problems. The FACA is employed to compress the right-hand side excitation
matrix, and the solution of each excitation is accelerated by the SPACA. Numerical results show that
the proposed technique can significantly improve efficiency of the conventional SPACA for monostatic
RCS problems. Furthermore, the FACA is validated to be more efficient for compressing the excitation
matrix than the conventional ACA. Thus, the proposed method is useful for calculating the monostatic
RCS, which is an important parameter in the military field.
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