1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, May 1987.
doi:10.1103/PhysRevLett.58.2059
2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 2486-2489, Jun. 1987.
doi:10.1103/PhysRevLett.58.2486
3. Sauvan, C., Lalanne, and J.-Hugonin, "Photonics: tuning holes in photonic-crystal nanocavities," Nature, Vol. 429, No. 6988, 1-154, 2004.
doi:10.1038/nature02602
4. Pan, J., Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, "Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system," Appl. Phys. Lett., Vol. 97, No. 10, 101102, 2010.
doi:10.1063/1.3486686
5. Sun, C., C. H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. S. Peh, and V. Stojanovic, "DSENT - A tool connecting emerging photonics with electronics for opto-electronic networks-on-chip modeling," Proceedings of the 2012 6th IEEE/ACM International Symposium on Networks-on-Chip, NoCS 2012, 201-210, 2012.
doi:10.1109/NOCS.2012.31
6. Inoue, T., M. De Zoysa, T. Asano, and S. Noda, "On-chip integration and high-speed switching of multi-wavelength narrowband thermal emitters," Appl. Phys. Lett., Vol. 108, No. 9, 091101, 2016.
doi:10.1063/1.4942595
7. Bragheri, F., R. Osellame, and R. Ramponi, "Optofluidics for biophotonic applications," IEEE Photonics J., Vol. 4, No. 2, 596-600, 2012.
doi:10.1109/JPHOT.2012.2190725
8. Sayrin, C., C. Clausen, B. Albrecht, Schneeweiss, and A. Rauschenbeutel, "Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms," Optica, Vol. 2, No. 4, 353, 2015.
doi:10.1364/OPTICA.2.000353
9. Loncar, M., "Molecular sensors: Cavities lead the way," Nat. Photonics, Vol. 1, No. 10, 565-567, Feb. 2007.
doi:10.1038/nphoton.2007.187
10. Osorio, D. and A. D. Ham, "Spectral reflectance and directional properties of structural coloration in bird plumage," J. Exp. Biol., Vol. 205, No. 14, 2017-2027, 2002.
11. Vigneron, J. and Simonis, "Natural photonic crystals," Phys. B Condens. Matter, Vol. 407, No. 20, 4032-4036, Oct. 2012.
doi:10.1016/j.physb.2011.12.130
12. Forster, J. D., H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. C. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, "Biomimetic isotropic nanostructures for structural coloration," Adv. Mater., Vol. 22, No. 26-27, 2939, Jul. 2010.
doi:10.1002/adma.200903693
13. Fu, T., Z. Yang, Z. Shi, F. Lan, D. Li, and X. Gao, "Dispersion properties of a 2D magnetized plasma metallic photonic crystal," Phys. Plasmas, Vol. 20, No. 2, 023109, 2013.
doi:10.1063/1.4792264
14. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals," J. Plasma Fusion Res., Vol. 80, No. 2, 89-90, 2004.
doi:10.1585/jspf.80.89
15. Qi, L., Z. Yang, X. Gao, F. Lan, and Z. Shi, "Transmission characteristics of electromagnetic waves in plasma photonic crystal by a novel FDTD method," PIERS Proceedings, 1044-1048, Beijing, China, Mar. 23-27, 2009.
16. Ataei, E., M. Sharifian, and N. Z. Bidoki, "Magnetized plasma photonic crystals band gap," J. Plasma Phys., Vol. 80, No. 04, 581-592, Aug. 2014.
doi:10.1017/S0022377814000105
17. Ashutosh and K. Jain, "FDTD analysis of the dispersion characteristics of the metal pbg structures," Progress In Electromagnetics Research B, Vol. 39, 71-88, Feb. 2012.
doi:10.2528/PIERB11120601
18. Umenyi, A. V., K. Miura, and O. Hanaizumi, "Modified finite-difference time-domain method for triangular lattice photonic crystals," J. Light. Technol., Vol. 27, No. 22, 4995-5001, Nov. 2009.
doi:10.1109/JLT.2009.2027449
19. Schneider, J., "Understanding the finite-difference time-domain method," Sch. Electr. Eng. Comput., 2014.
20. Kunz, K. and R. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, Scitech Publishing Inc., 1993.
21. Lewyt, H., "Courant-Friedrichs-Lewy,", Mar. 1967.
22. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony’s methods," IEEE Microw. Guid. Wave Lett., Vol. 2, No. 11, 431-433, Nov. 1992.
doi:10.1109/75.165633
23. Qiu, M. and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys., Vol. 87, No. 12, 8268, 2000.
doi:10.1063/1.373537