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Non-Conventional Discretization Grid Based FDTD for EM Wave
Propagation in Magnetized Plasma Metallic Photonic Crystal

Mayank K. Chaudhari1, 2, *

Abstract—Photonic band gaps of plasma metallic photonic crystals can be tuned dynamically by
subjecting it to external magnetic field leading to variety of applications. Dispersion characteristics of
2D photonic crystals are often studied by Finite Difference Time Domain (FDTD) method based on
standard Yee’s grid discretization schema, in which x- and y-components of fields are defined on different
edges of the Yee’s cell. However, finite difference equations for electromagnetic wave propagation in
magnetized plasma involve interdependence of polarization currents and electric field in a manner that
requires both x- and y-components of fields to be evaluated at the same spatial location. A non-
conventional discretization technique is presented in which x- and y-components of fields are evaluated
at the same spatial location. In this paper analysis of magnetized plasma metallic photonic crystals
(PMPC) is presented using the new grid. However, the proposed discretization scheme can be used to
introduce magnetized plasmas in any type of structures that can be studied on the basis of standard Yee’s
grid. For example, topics such as photonic band gap (PBG) cavities based on PMPC, PBG waveguides
involving plasma, metamaterials, etc. can be very effectively studied using the approach presented in
this paper. Interesting results are found when PMPC is subject to external magnetic field. Several
new bands including two dispersion-less flat bands appear and the existing bands with an exception of
first band slightly shift upward when PMPC is subjected to an external transverse magnetic field. The
location of flat bands and the location and width of forbidden band gaps can be controlled by external
magnetic field as well as plasma parameters. New band gaps appearing for lower r/a for magnetized
PMPC can be utilized for several applications such as PBG cavity design for gyrotron devices.

1. INTRODUCTION

The concept of photonic crystals (PCs) has gained increasing popularity since original proposition by
Yablonovitch and John in 1987 owing to their incredible capacity to mould the flow of light and their
tunefulness [1, 2]. Properties of PCs are dramatically controlled by their structural parameters and
offer vast variety of applications such as brag-reflectors, filters, anti-reflecting coatings, fibers, cavities
for devices such as lasers and gyrotron, Nano-cavities for enhancement of light-matter interaction,
cloaking, self-focusing media, sensors, ultra-fast photonic circuits etc. [3–9]. These are structures having
periodicity in one, two, or three dimensions with unit cell dimensions of the order of wavelength of light.
PCs appear in nature in the form of structural coloration. The colors in the peacock’s feather and the
wings of Morpho butterflies as well as many opals are samples of superior natural architecture [10–12].
These colors are exhibited because of interference of light reflected and transmitted by these nano-
structures.
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The concept of PCs is extended to metallic photonic crystals (MPC) and plasma metallic photonic
crystals (PMPCs). Using metal inclusions provides higher power handling capability and introducing
plasma adds additional degree of freedom for tuning photonic band gaps [13–15]. Band structures
of plasma-dielectric and plasma-metallic photonic crystals can be engineered by altering plasma
parameters. Moreover, dynamical tunefulness of PMPC by external magnetic field opens avenues for
new applications [13, 16]. PCs, MPCs, and PMPCs are extensively studied in recent decades. All of
these have been analyzed by techniques such as plane wave expansion method, transfer matrix method,
multiple multipole method, finite element method, Finite Difference Time Domain (FDTD), etc. [17].
The need is felt for FDTD implementation based on nonconventional discretization grid as opposed
to conventional electromagnetic problems, in formalism of magnetized PMPC x- and y-components of
electric fields are interdependent in such a way that they must be evaluated at same spatial location. In
standard Yee’s grid, x- and y-components of electric field are defined along different edges of the unit
cell of the grid. This interdependence is via polarization currents in plasma. Thus, to solve this problem
a modified discretization grid structure is introduced. Simulations based on new grid are in excellent
agreement with simulations based on standard Yee’s grid and other techniques. In this paper modified
discretization grid is used to analyze magnetized PMPC. Study of PMPC and magnetized PMPC in
triangular lattice arrangements is also presented which is not reported till now. The approach presented
herein can be used for introducing magnetized plasmas in any FDTD simulation.

2. THEORETICAL MODEL FOR PMPC

2D PMPC can be realized by placing metallic rods in plasma background. Fig. 1 shows cross-sectional
view of PMPCs along with reciprocal lattices in square as well as triangular lattice arrangements.
Dispersion characteristics of these PCs are obtained by analyzing the response of the structure along
the boundaries of irreducible Brillion zone. For FDTD analysis a primitive unit cell is chosen to span
the computational domain which is terminated by periodic boundary condition. Unit cells considered
in present analysis are shown by square and rectangle for square and triangular lattice respectively. To
avoid non-orthogonal FDTD, a modified primitive unit cell originally proposed by Umenyi et al. is used
to span the computational domain for triangular lattice [18].

Electromagnetic wave propagation in plasma medium can be described in terms of polarization

Figure 1. Cross sectional view of PMPC in configuration space along with reciprocal lattices. Dark
circles represent metallic rods placed in background of plasma. Square and rectangle shown in square
and triangular lattice respectively in configuration space show the primitive unit cells considered to
span the computational domain. Irreducible Brillion zones are shown by shaded region in respective
reciprocal lattices.
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currents [13, 15]. Maxwell’s equations in plasma medium may be written as follows
∂H
∂t

= − 1
μ0

∇× E (1)

∂E
∂t

=
1
ε0

(∇× H − J) (2)

where J = Jxî + Jy ĵ + Jz k̂ is the polarization current density vector which includes the information of
frequency dependent permittivity of plasma; E = Exî + Ey ĵ + Ez k̂ is the electric field strength vector;
H = Hxî + Hy ĵ + Hzk̂ is the magnetic field strength; ε0 and μ0 are permittivity and permeability of
free space. The time varying polarization current density may be expressed by [find reference — EM
wave in magnetized plasma]

dJ
dt

+ υJ = ε0ω
2
pE + ωc × J (3)

where ωc = ωcxî + ωcy ĵ + ωczk̂ = (eB/m) is the electron cyclotron frequency, ωp the angular
plasma oscillation frequency and υ the plasma collision frequency. For transverse magnetic field
ωc = ωczk̂ = (eB/m)k̂, where, B is the applied magnetic field, e the electronic charge and m the
mass of electron. Since x- and y-components of electron cyclotron frequency are zero, external magnetic
field does not influence plasma polarization current along z-direction. Hence, only TE mode is influenced
by transverse magnetic field applied to the PMPC. x- and y-components of polarization current are as
follows

dJx

dt
+ υJx = ε0ω

2
pEx − ωczJy (4)

dJy

dt
+ υJy = ε0ω

2
pEy + ωczJx (5)

Using Eq. (4) and Eq. (5) updating equations compatible with FDTD implementations for plasma
polarization currents may be written as follows
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where s1 = 1
dt + υ

2 and s2 = 1
dt − υ

2 . As obviously seen from difference equations for Jx and Jy, the
x- and y-components of electric field and polarization currents are interdependent in such a manner
that they must be computed at the same spatial location. Spatial indices are deliberately dropped
from Eq. (6) and Eq. (7) as all the quantities involved are computed at the same spatial position, i.e.,
corresponding to same spatial location. The superscripts denote time step in accordance with standard
FDTD convention.

3. SIMULATION METHOD BASED ON MODIFIED DISCRETIZATION GRID

FDTD method is based on the principle of solving finite difference equations corresponding to Maxwell’s
laws of electromagnetics at every spatial node and time step. At a particular instance in simulation,
electric and magnetic fields at every spatial node are known for past time step and the fields for future
time step are computed by solving Maxwell’s equations in differential form [19, 20]. Simulations involving
plasma medium require additional equations for updating plasma currents (Eq. (6) and Eq. (7)). Fig. 2
shows modified grid for TE polarization. Arrows represent x- and y-components of electric field and
polarization currents density and the dots represent z-component of magnetic field. For TM polarization
one need only interchange the interpretation of dots and arrows. The modified grid is essentially a
superposition of two Yee’s discretization grids shifted by half spatial step in both x- and y-direction.
Thus all the formalism developed based on standard Yee’s grid may very easily be implemented using
new grid. In addition, the new grid must also follow stability and accuracy criteria derived originally
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Figure 2. Modified discretization grid for magnetized plasmas. It is essentially superposition of two
Yee’s grid shifted by half spatial step. For TE polarization, the arrows represent x- and y-components
of electric field and polarization current density and the dots represent z-component of magnetic field.
Δx and Δy are spatial steps along x- and y-directions respectively. For FDTD implementation based on
new grid, the grid points are indexed in multiples of integers along y-direction and in multiples of half-
integers along x-direction. i and j are essentially the indices of the array elements of the arrays used to
store the respective quantities at spatial steps. The computation domain is spanned by (2n+1)×(2m+1)
node points. One row at bottom and one column on the right of node points is defined deliberately for
terminating the grid with appropriate boundary condition.

for the standard Yee’s grid such as Courant-Friedrichs-Lewy (CFL) criterion [17, 21]. This grid may
very easily be extrapolated to 3 dimensions as well.

Henceforth, we may denote quantities whose x- and y-components are taken by ξxy and the
quantities whose z-component is taken by ηz with the understanding that x- and y-components of electric
field and polarization current and z-component of magnetic field are considered for TE polarization, and
the x- and y-components of magnetic field and z-component of electric field and polarization current
are considered for TM polarization. At even rows ηz is defined at integral steps and ξxy defined at
half-integer steps whereas for odd rows it is vice-versa. Time steps are discretised in accordance with
CFL criterion.

Δt ≤ Δtmax =
1

c
√

1/Δx2 + 1/Δy2
(8)

The indexed quantities may be represented as follows
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(9)

Similar to conventional FDTD, for the present approach magnetic field is computed at (n+1/2)Δt
and electric field computed at nΔt time instances. Since polarization current appears in electric field
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update equation, it is computed at (n+1/2)Δt time instance. The general form of partial finite difference
equations may be represented as follows

∂

∂t
f

∣∣∣∣
n

i,j

=
f |n+1/2

i,j − f |n−1/2
i,j

Δt
(10)

3.1. Material Property Distribution

For material properties distribution, the grid may be seen as superposition of two Yee’s grids shifted by
half the special step in both the directions. The material properties corresponding to given node may be
assigned according to the sub-grid (one of the two overlapping Yee’s grids) which it belongs to. Detailed
description of material properties distribution in standard FDTD computation domain can be found
in [19, 20]. Dielectric and metallic components may be characterized by their permittivity, permeability
and conductivity as in the case of standard FDTD. Now to write generalized electromagnetic wave
equations for FDTD involving dielectrics, metals as well as plasmas, Eq. (2) may be rewritten as follows

∂E
∂t

=
1
ε0

(∇× H − σE − J) (11)

For defining plasma in the computation domain electrical conductivity is set to zero and permittivity to
permittivity of free space ε0. J is plasma polarization current, and it must be zero everywhere except
plasma medium. Eq. (6) and Eq. (7) are used to update J in plasma medium only. Time updating
equations based on modified grid may be written very easily in the form of finite difference equation
using Eqs. (1), (6), (7), (9)–(11). For results produced in this paper, metal rods are considered perfectly
metallic, i.e., electric field inside metal posts is forced to zero. Thus, conductivity profile is not required
to be specified, and Eq. (2) can be used instead of Eq. (11). This approach is perfectly valid for obtaining
dispersion curves for metal rods of sufficiently high conductivity and rod radius of the order of mm (skin
depth for copper at 5 GHz is of the order of 10−3 mm hence effect of evanescent waves can be neglected
for the studies presented herein (a = 1cm). However, it will be important to consider this effect if one
wants to scale the structure for application in lower frequency regime).

3.2. Initialization, Boundary Condition and Post Processing

The computational domain is initialized by hardwiring several sources. As modified grid is superposition
of two Yee’s grid, sources should be defined at corresponding positions in both the grids. Derivative of
Gaussian pulse is used to initialize sources. Bloch periodic boundary condition is used for terminating
the computational domain. Implementation of boundary conditions is done to update the terminal nodes
in two parts. In the present approach, the main computation domain is spanned by (2n + 1)× (2m + 1)
node points. One row at bottom and one column on the right of node points is defined deliberately
for terminating the grid with appropriate boundary condition. Bloch periodic boundary condition is
explained in following discussion. One may implement any other boundary condition such as perfectly
matched layer (PML), convolution PML etc. as well in a similar manner. The same convention of even
and odd rows defined in Eq. (9) is used. For even rows, main computation domain is terminated by ηz,
and for odd rows it is terminated by ξxy. Boundary conditions may be applied as follows

ξxy (i, end) = exp(ikxa) × ξxy (i, 1)
ηz (i, 1) = exp(−ikxa) × ηz (i, end)

}
for even rows

ξxy (i, 1) = exp(−ikxa) × ξxy (i, end)
ηz (i, end) = exp(ikxa) × ηz (i, 1)

}
for odd rows

(12)

here kx is the wave-vector along x-direction; a is the lattice constant; ξxy(i, end), ηz(i, end) denote
auxiliary nodes used for implementation of boundary conditions for respective quantities. Boundary
conditions should also be applied along y-direction in a similar manner. For triangular lattice, the
boundary condition is implemented in two parts. These modified boundary conditions for conventional
Yee grid are explained by Umenyi et al. [18]. The same may be implemented in accordance with Eq. (12).
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As FDTD simulation evolves over time, fields are recorded at several predefined probe positions. The
time domain signal is then converted to frequency domain using fast Fourier Transform (FFT). For
efficient use of FFT and sufficient accuracy, FDTD is allowed to evolve for 214 time steps. The peaks
in frequency response correspond to frequencies that sustain in the PC, i.e., dispersion curves. Several
spurious modes are observed which are purely mathematical and could be easily distinguished in this
case from physical modes by looking at the pattern followed by surrounding modes. Physical modes
form a smooth curves corresponding to allowed bends. These spurious modes are because of finite
frequency resolution while using FFT and truncation of time domain signal to a rectangular window of
NΔt, where N is the number of time steps and Δt the width of a time step [22].

4. RESULTS

4.1. Dispersion Curves of MPC, PMPC and Magnetized PMPC

The dispersion characteristics of 2D MPC and un-magnetized PMPC for r/a = 0.2 and normalized
plasma frequency (ωpa/2πc) = 0.5 in square and triangular lattice arrangements computed based on
standard Yee’s grid and modified discretization grid are compared in Fig. 3. Plasma collision frequency
is very small and can be neglected for thin plasmas. Only TE polarization is presented as external
magnetic field applied in transverse direction does not affect TM polarization. Both results are in
excellent agreement confirming the accuracy of the implementation. These results are also in close
agreement with non-orthogonal FDTD and modified plane wave expansion method as reported by
Qiu and He [23]. Fig. 4 shows dispersion curves of PMPC when placed in external magnetic field of
0.5Tesla. No band gaps are observed in MPC in both square and triangular lattice arrangements for
r/a = 0.2 up to normalized frequency equal to 4. However, on introducing plasma background photonic
bands are up-shifted, and zero order band gaps with normalized cutoff frequencies 0.4797 and 0.4898
respectively for square and triangular lattice are observed. Again when PMPC is subjected to external
magnetic field several new bands and band gaps appear. It is seen that the effects of external magnetic
field are similar on both square and triangular lattice PMPC. Two flat bands are observed at normalized
frequencies 0.4185 and 0.6801 in the case of square lattice and at normalized frequencies 0.4171 and
0.6777 in the case of triangular lattice. Apart from the cutoff band, three higher order band gaps are
observed between (0.3139, 0.4883), (0.6801, 0.7585), and (0.8196, 0.8544) for square lattice and (0.3128,
0.5039), (0.6777, 0.7646), and (0.8161, 0.8862) for triangular lattice. The lower flat band lies in photonic
band gaps and may be utilized for innovative applications such as tuneable monochromatic filter.

(a) (b)

Figure 3. Comparison between dispersion curves obtained based on standard Yee grid and modified
grid. Dispersion curves for TE mode of MPC and un-magnetized PMPC in (a) square and (b) triangular
lattice arrangements. r/a = 0.2 and normalized plasma frequency.
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(a) (b)

Figure 4. Dispersion curves of magnetized PMPC. Dispersion curves for TE mode of magnetized
PMPC in (a) square and (b) triangular lattice arrangements. r/a = 0.2, normalized plasma frequency
and external magnetic field 0.5 T.

(d)

(a) (b)

(c)

Figure 5. Effect of magnetic field on flat bands and photonic band gaps. Locations of upper flat band
for (a) square and (b) triangular lattice arrangement. Variation in photonic band gaps with external
magnetic field for (c) square and (d) triangular lattice arrangement.

4.2. Effect of External Magnetic Field on Flat Bands and Photonic Band Gaps

Flat bands appearing in magnetized PMPC are most distinguished feature of its dispersion diagrams.
Flat bands indicate dispersion-less propagation. Locations of flat bands and the location and width of
photonic band gaps can be tuned dynamically by external magnetic field. Locations of flat bands for
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square and triangular lattices are given in Figs. 5(a) and (b) respectively. Locations of upper flat band
correspond to upper hybrid frequency ωH =

√
ω2

p + ω2
c . Thus, it can be concluded that this flat band

is caused by cyclotron resonance.
For applied magnetic field less than 0.2 Tesla, the lower flat band appears around the real part

of ωL/ωR. ωL = 1
2(−ωc +

√
(ω2

c + 4ω2
p)) and ωR = 1

2(ωc +
√

(ω2
c − 4ω2

p)). Figs. 5(c) and (d) shows
variation of photonic band gaps with respect to applied magnetic field for square and triangular lattices
respectively. Dependence of photonic band gaps and flat bands on magnetic field is similar for both
the lattices. It is clear from these figures that with applying external magnetic field new bands appear
in the region of cutoff band. The new cutoff frequency first increases with magnetic field and then
decreases. The lower frequency of first order band gap is nearly around real part of ωL/ωR. The second
order band gaps appear because of flattening of first band of un-magnetized PMPC.

5. CONCLUSION

Nonconventional discretization scheme is presented for implementation of FDTD for EM wave
propagation in magnetized plasma. FDTD implementation based on the proposed grid is used to
study the effect of magnetic field on plasma metallic photonic crystal in square as well as triangular
lattice arrangements. This new grid can very easily be extended to three dimensions as well and can be
used to solve for any structure involving magnetized plasmas. Some attractive applications involve
designing PMPC cavity for gyrotron devices, magnetically controlled plasma waveguides, tuneable
monochromatic filter, metamaterials with magnetized plasma inclusions etc. It is observed that the
effects of external magnetic field are similar on both square and triangular lattice arrangements. Flat
bands appear at the location of upper hybrid frequency up to certain value of magnetic field. When
magnetic field is increased beyond 1 Tesla in the case of square lattice arrangement, the flat bands
start to show considerable curvatures. Thus, the position of flat bands and photonic band gaps can be
tuned dynamically by controlling external magnetic field. The study presented herein based on a new
discretization grid will be useful in designing photonic devices involving plasmas in external magnetic
field.
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