Vol. 69
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-09-18
The Gabor Frame as a Discretization for the 2D Transverse-Electric Scattering-Problem Domain Integral Equation
By
Progress In Electromagnetics Research B, Vol. 69, 117-136, 2016
Abstract
We apply the Gabor frame as a projection method to numerically solve a 2D transverse electric-polarized domain-integral equation for a homogeneous medium. Since the Gabor frame is spatially as well as spectrally very well convergent, it is convenient to use for solving a domain integral equation. The mixed spatial and spectral nature of the Gabor frame creates a natural and fast way to Fourier transform a function. In the spectral domain we employ a coordinate scaling to smoothen the branchcut found in the Green function. We have developed algorithms to perform multiplication and convolution efficiently, scaling as O(NlogN) on the number of Gabor coefficients, yielding an overall algorithm that also scales as O(NlogN).
Citation
Roeland Johannes Dilz, and Martijn Constant van Beurden, "The Gabor Frame as a Discretization for the 2D Transverse-Electric Scattering-Problem Domain Integral Equation," Progress In Electromagnetics Research B, Vol. 69, 117-136, 2016.
doi:10.2528/PIERB16061406
References

1. Basharin, A. A., M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, "Dielectric metamaterials with toroidal dipolar response," Physical Review X, 2015.

2. Ribot, C., P. Lalanne, M.-S.-L. Lee, B. Loiseaux, and J.-P. Huignard, "Analysis of blazed diffractive optical elements formed with artificial dielectrics," Jounal of the Optical Society of America A, Vol. 24, No. 12, 3819-3826, 2007.
doi:10.1364/JOSAA.24.003819

3. Glaser, T., S. Schroter, H. Bartelt, H.-J. Fuchs, and E.-B. Kley, "Diffractive optical isolator made of high-efficiency dielectric gratings only," Applied Optics, Vol. 41, No. 18, 3558-3566, 2002.
doi:10.1364/AO.41.003558

4. Dzibrou, D. O., J. J. G. M. van der Tol, and M. K. Smit, "Tolerant polarization converter for ingaaspinp photonic integrated circuits," Optics Letters, Vol. 38, No. 18, 3482-3484, 2013.
doi:10.1364/OL.38.003482

5. Wang, L., Y. Wang, and X. Zhang, "Embedded metallic focus grating for silicon nitride waveguide with enhanced coupling and directive radiation," Optical Express, Vol. 20, No. 16, 2012.

6. Shlager, K. L. and J. B. Schneider, "A selective survey of the finite-difference time-domain literature," IEEE Antennas and Propagation Magazine, Vol. 37, No. 4, 1995.
doi:10.1109/74.414731

7. Bengzon, F. and M. G. Larson, The Finite Element Method: Theory, Implementation, and Applications, Springer, 2013.
doi:10.1007/978-3-642-33287-6

8. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103

9. Zwamborn, P. and P. M. van den Berg, "The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 9, 1992.
doi:10.1109/22.156602

10. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Science, Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504

11. Philips, J. R. and J. K. White, "Efficient capacitiance extraction of 3D structures using generalized precorrected FFT methods," IEEE Transactions on Microwave Theory and Techniques, 253-256, 1994.

12. Botten, I. C., M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, "The dielectric Lamellar diffraction grating," Optica Acta, Vol. 28, No. 3, 413-428, 1981.
doi:10.1080/713820571

13. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," Jounal of the Optical Society of America, Vol. 71, No. 7, 1981.

14. Chandezon, J., D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," Journal of Optics, Vol. 11, 235-241, 1980.
doi:10.1088/0150-536X/11/4/005

15. Poyedinchuk, A. Y., Y. A. Tuchkin, N. P. Yashina, J. Chandezon, and G. Granet, "C-method: Several aspects of spectral theorry of gratings," Progress In Electromagnetics Research, Vol. 59, 113-149, 2006.
doi:10.2528/PIER05050901

16. Van Beurden, M. C., "A spectral volume integral equation method for arbitrary bi-periodic gratings with explicit Fourier factorization," Progress In Electromagnetics Research B, Vol. 36, 133-149, 2012.
doi:10.2528/PIERB11100307

17. Pisarenco, M., J. Maubach, I. Setija, and R. Mattheij, "Formulation for simulation of scattering from finite structures," Journal of The Optical Society of America A, 2010.

18. Bastiaans, M. J., "A sampling theorem for the complex spectrogram, and Gabor's expansion of a signal in Gaussian elementary signals," Optical Engineering, Vol. 20, No. 4, 594-598, 1981.
doi:10.1117/12.7972768

19. Bastiaans, M. J., Gabor's expansion and the Zak transform for continuous-time and discrete-time signals: Critical sampling and rational oversampling, Eindhoven University of Technology, Eindhoven, 1995.

20. Feichtinger, H. G. and T. Strohmer, Gabor Analysis and Algorithms: Theory and Applications, Birkhauser, 1998.
doi:10.1007/978-1-4612-2016-9

21. Battle, G., "Heisenberg proof of the Balian-Low theorem," Letters in Mathematical Physics, Vol. 15, 175-177, 1988.
doi:10.1007/BF00397840

22. Benedetto, J. J., C. Heil, and D. F. Walnut, "Differentiation and the Balian-Low theorem," The Journal of Fourier Analysis and Applications, Vol. 1, No. 4, 355-402, 1995.
doi:10.1007/s00041-001-4016-5

23. Sondergaard, P. L., Finite discrete Gabor analysis, PhD Thesis, Institut for Matematik, DTU, 2007.

24. Maciel, J. J. and L. B. Felsen, "Discretized Gabor-based beam algorithm for time-harmonic radiation from two-dimensional truncated planar aperture distributions --- I: Formulation and solution," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 12, 1751-1759, 2002.
doi:10.1109/TAP.2002.807419

25. Maciel, J. J. and L. B. Felsen, "ctime-harmonic radiation from two-dimensional truncated planar aperture distributions --- II: Asymptotics and numerical tests," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 12, 1760-1768, 2002.
doi:10.1109/TAP.2002.807381

26. Einziger, P. D., S. Raz, and M. Saphira, "Gabor representation and aperture theory," Journal of Journal of the Optical Society of America, Vol. 3, No. 4, 508-522, 1986.
doi:10.1364/JOSAA.3.000508

27. Maciel, J. J. and L. B. Felsen, "Systematic study of fields due to extended apertures by Gaussian discretization," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 7, 884-892, 1989.
doi:10.1109/8.29383

28. Daubechies, I., S. Jaffard, and J.-L. Journe, "A simple Wilson orthonormal basis with exponential decay," SIAM Journal on Mathematical Analysis, Vol. 22, No. 2, 554-572, 1991.
doi:10.1137/0522035

29. Floris, S. J. and B. P. de Hon, "Electromagnetic field expansion in a Wilson basis," Proceedings of the 42nd European Microwave Conference (EuMC), Amsterdam, NL, Oct. 29-Nov. 1, 2012.

30. Lugara, D. and C. Letrou, "Printed antennas analysis by a Gabor frame-based method of moments," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 11, 1588-1597, 2002.
doi:10.1109/TAP.2002.804023

31. Jackson, J. D., "Classical Electrodynamics," Wiley, 2007.

32. Szego, G., "Orthogonal polynomials," Royal American Mathematical Society, 1975.

33. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, Inc., 1989.

34. Burger, S., L. Zschiedrich, J. Pomplun, and F. Schmidt, "Finite-element based electromagnetic field simulations: Benchmark results for isolated structures," Proc. SPIE, Vol. 8880, 2013.