Vol. 49
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-08-21
An Extension of the Linear Embedding via Green's Operators Method for the Analysis of Disconnected Finite Antenna Arrays
By
Progress In Electromagnetics Research M, Vol. 49, 141-151, 2016
Abstract
We describe an extension of the linear embedding via Green's operators (LEGO) method to the solution of finite antenna arrays comprised of disconnected elements in a homogeneous medium. The ultimate goal is the calculation of the admittance matrix and the radiation pattern of the array. As the basic idea is the inclusion of an array element inside a LEGO electromagnetic brick, the first step towards the solution consists of the definition and numerical calculation of hybrid scattering-admittance operators which extend the notion of scattering operators of equivalent currents introduced in the past. Then again, the combination of many bricks involves the usual transfer operators for the description of the multiple scattering between the bricks. Moreover, to reduce the size of the problem we implement the eigencurrents expansion. With the aid of a numerical example we discuss the validation of the approach and the behaviour of the total CPU time as a function of the elements forming the array.
Citation
Salman Mokhlespour, Vito Lancellotti, and Antonius G. Tijhuis, "An Extension of the Linear Embedding via Green's Operators Method for the Analysis of Disconnected Finite Antenna Arrays," Progress In Electromagnetics Research M, Vol. 49, 141-151, 2016.
doi:10.2528/PIERM16052904
References

1. Holter, H. and H. Steyskal, "On the size requirement for finite phased-array models," IEEE Transactions on Antennas and Propagation, Vol. 50, 836-840, Jun. 2002.
doi:10.1109/TAP.2002.1017665

2. Jorgenson, R. E. and R. Mittra, "Efficient calculation of the free-space periodic Green’s function," IEEE Transactions on Antennas and Propagation, Vol. 38, 633-642, May 1990.
doi:10.1109/8.53491

3. Skrivervik, A. K. and J. R. Mosig, "Analysis of printed array antennas," IEEE Transactions on Antennas and Propagation, Vol. 45, 1411-1418, Sept. 1997.
doi:10.1109/8.623131

4. Zhang, B., G. Xiao, J. Mao, and Y. Wang, "Analyzing large-scale non-periodic arrays with synthetic basis functions," IEEE Trans. Antennas Propag., Vol. 58, 3576-3584, Nov. 2010.
doi:10.1109/TAP.2010.2071331

5. Maaskant, R., R. Mittra, and A. G. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Antennas Propag., Vol. 56, 3440-3451, Nov. 2008.
doi:10.1109/TAP.2008.2005471

6. Bekers, D. J., S. J. L. van Eijndhoven, and A. G. Tijhuis, "An eigencurrent approach for the analysis of finite antenna arrays," IEEE Trans. Antennas Propag., Vol. 58, 3772-3782, Dec. 2009.
doi:10.1109/TAP.2009.2027617

7. Li, M. K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antennas Propag., Vol. 55, 130-138, Jan. 2007.
doi:10.1109/TAP.2006.888453

8. Van de Water, A. M., B. P. de Hon, M. C. van Beurden, A. G. Tijhuis, and P. de Maagt, "Linear embedding via Green’s operators: A modeling technique for finite electromagnetic bandgap structures," Physics Review E, Vol. 72, 1-11, Nov. 2005.

9. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "An eigencurrent approach to the analysis of electrically large 3-D structures using linear embedding via Green’s operators," IEEE Trans. Antennas Propag., Vol. 57, 3575-3585, Nov. 2009.
doi:10.1109/TAP.2009.2027616

10. Lancellotti, V. and D. Melazzi, "Hybrid LEGO-EFIE method applied to antenna problems comprised of anisotropic media," Forum in Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 6, 1-19, 2014, Online at www.e-fermat.org.

11. Olvera, A. D. J. F., D. Melazzi, and V. Lancellotti, "Beam-forming and beam-steering capabilities of a reconfigurable plasma antenna array," Progress In Electromagnetics Research C, Vol. 65, 11-22, 2016.
doi:10.2528/PIERC16031506

12. Lancellotti, V. and A. G. Tijhuis, "Solving wave propagation within finite-sized composite media with linear embedding via Green’s operators," Progress In Electromagnetics Research M, Vol. 25, 127-140, 2012.
doi:10.2528/PIERM12061404

13. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Scattering from large 3-D piecewise homogeneous bodies through linear embedding via Green’s operators and Arnoldi basis functions," Progress In Electromagnetics Research, Vol. 103, 305-322, 2010.
doi:10.2528/PIER10032915

14. Mokhlespour, S., V. Lancellotti, and A. G. Tijhuis, "Hybrid scattering-admittance operators for the analysis of finite antenna arrays," 9th European Conference on Antennas and Propagation (EuCAP 2015), 1-4, May 2015.

15. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd Ed., John Wiley & Sons, Inc., 1997.

16. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "On the convergence of the eigencurrent expansion method applied to linear embedding via Green’s operators (LEGO)," IEEE Trans. Antennas Propag., Vol. 58, 3231-3238, Oct. 2010.
doi:10.1109/TAP.2010.2055804

17. Lancellotti, V. and R. Maaskant, "A comparison of two types of macro basis functions defined on LEGO electromagnetic bricks," 9th European Conference on Antennas and Propagation (EuCAP 2015), (Lisbon, Portugal), Apr. 2015.
doi:10.1109/TAP.2010.2055804

18. Lancellotti, V. and A. G. Tijhuis, "Linear embedding via Green’s operators," Computational Electromagnetics, R. Mittra (ed.), 227-257, Springer Science + Business Media, New York, 2014.

19. Çivi, O. A., P. H. Pathak, H.-T. Chou, and P. Nepa, "A hybrid uniform geometrical theory of diffraction-moment method for efficient analysis of electromagnetic radiation/scattering from large finite planar arrays," Radio Science, Vol. 35, No. 2, 607-620, 2000.
doi:10.1029/1999RS001922

20. Maaskant, R. and V. Lancellotti, "Field computations through the ACA algorithm," 9th European Conference on Antennas and Propagation (EuCAP 2015), Lisbon, Portugal, Apr. 2015.