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An Extension of the Linear Embedding via Green’s Operators
Method for the Analysis of Disconnected Finite Antenna Arrays

Salman Mokhlespour*, Vito Lancellotti, and Anton G. Tijhuis

Abstract—We describe an extension of the linear embedding via Green’s operators (LEGO) method
to the solution of finite antenna arrays comprised of disconnected elements in a homogeneous medium.
The ultimate goal is the calculation of the admittance matrix and the radiation pattern of the array.
As the basic idea is the inclusion of an array element inside an electromagnetic “brick,” the first step
towards the solution consists of the definition and numerical calculation of hybrid scattering-admittance
operators which extend the notion of scattering operators of equivalent currents introduced in the past.
Next, the bricks are combined by means of the usual transfer operators to account for the multiple
scattering between the bricks. Finally, LEGO is complemented with the eigencurrents expansion so as
to reduce the size of the problem. With the aid of a numerical example we discuss the validation of the
approach and the scaling of the total CPU time as a function of the elements forming the array.

1. INTRODUCTION

The solution of radiation problems involving large antenna arrays is not as a computationally intensive
task. When the array in question spans many wavelengths in one or more spatial dimensions, perhaps
the structure can be assumed as infinite and periodic [1, 2], and the analysis is then restricted to a
suitable fundamental cell. However, if the periodic approximation is not quite justified and dedicated
solution strategies are not adopted, the calculation time and memory requirements may easily make it
impractical to analyze many configurations in a design process.

To overcome this limitation, many numerical methods have been proposed, which allow analyzing
finite antenna arrays accurately and efficiently. For instance, if the elements are arranged in a regular
pattern, the “windowing” of the relevant periodic Green’s function has been used to account for edge
effects [3]. Other approaches, such as the synthetic functions [4], the characteristic basis functions [5] and
the eigencurrents [6] employ aggregate or macro basis functions (MBFs) to reduce the degrees of freedom
(DoF) and, ultimately, the simulation time. These strategies are quite general in that they can handle,
in principle, antenna arrays in which the positions of the elements do not follow a repetitive pattern. By
contrast, domain decomposition methods (DDMs), such as the equivalence principle algorithm [7], are
based on the initial conceptual separation of the problem into sub-domains, each one enclosing an array
element. The sub-domains are first characterized independently; this is a relatively fast procedure,
so long as sub-domains can be defined smaller than or comparable to the wavelength. The mutual
coupling between the elements is then exactly included in the formulation, when the sub-domains are
combined together as prescribed by the geometry of the array. In practice, both MBFs and DDMs aim
at compressing the weak form of the original functional equations; the reduced matrices are generally
better conditioned and, more importantly, amenable to inversion with direct methods. Furthermore,
with DDMs fine geometrical details and related strong local interactions are handled separately from
the distant weak interactions, and this feature enables the efficient treatment of multi-scale structures.
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For all these reasons, we deem it profitable to extend the linear embedding via Green’s operators
(LEGO) method [8, 9] to the solution of finite antenna arrays comprised of disconnected metallic
elements in a homogeneous medium. In short, LEGO is a DDM that has been applied to both 2-
D [8] and 3-D [9] electromagnetic (EM) scattering from clusters of objects; the interaction between a
metallic antenna and a set of bodies (e.g., plasma discharges) has also been tackled successfully with
LEGO [10, 11]. However, formulating the radiation from finite antenna arrays calls for a substantial
overhaul of the approach, and the resultant upgraded LEGO constitutes the topic and the novelty of
this paper, as compared to previous work [9, 10, 12, 13].

In the standard LEGO, the separation into sub-domains is realized by enclosing one or more bodies
inside an EM “brick.” When the independent sources are located outside a brick† [9, Fig. 1], the latter
can be described by means of a scattering operator that links equivalent incident currents to equivalent
scattered currents. Hence, to apply the LEGO method to antenna arrays it seems natural to include
each array element inside a brick, which we then characterize by means of a hybrid scattering-admittance
operator [14], that is, a map between impressed quantities (incident currents on the brick’s boundary
and voltage generator at the antenna port) and secondary quantities (scattered currents on the brick’s
boundary and electric current at the antenna port). As a result, we can formulate an array problem by
combining bricks as usual, but to accommodate for the scattering-admittance operators, we must write
a new set of LEGO equations (cf. [9, Eqn. (16)]). The weak form of the latter can be compressed with
the eigencurrents, i.e., MBFs defined on the boundary of a brick, as done in [9, Section IV].
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Figure 1. LEGO for antenna arrays: (a) close-up of a bow-tie antenna showing the triangular-faceted
mesh and the port region; (b) the same bow-tie antenna enclosed in a cuboidal brick.

At the cost of a little computational overhead (namely, the calculation of the scattering-admittance
operators) solving an array with LEGO is advantageous for the following reasons:

(i) Since the scattering-admittance operator depends only on the shape of the enclosed antenna and
of the surrounding brick, arrays with different number of elements and, possibly, different spatial
arrangements can be efficiently modelled and solved by conceptually combining a set of bricks.

(ii) Since the scattering-admittance operator is designed to provide access to the antenna port within
a brick, lumped elements connected to the port can be easily included in the relevant equations.

(iii) Since non-uniform meshes (see Fig. 1(a)) are needed to model fine geometrical details, the very
separation of the geometry into bricks likely leads to a better conditioned algebraic system, as the
mesh of the bricks’ boundaries can be made uniform (see Fig. 1(b)).

(iv) Since the size of said algebraic system can be reduced by using few dominant eigencurrents, solving
the array requires inverting a comparatively small matrix, which can be done with direct solvers.

† The occurrence of elemental electric or magnetic dipoles within a brick can be handled by augmenting the scattered currents with
a “generator” term that accounts for the fields radiated by the independent sources [12].
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Admittedly, real-life arrays comprised of metallic and dielectric parts and elements connected by
current-carrying conductors (cf. [7]) may not fit in the LEGO framework to be described below. Still,
accounting for all details is hardly necessary in a preliminary analysis, as the main features of the
radiation pattern (RP) can likely be captured with a simplified antenna model. Therefore, LEGO
for disconnected arrays can be beneficial, e.g., for the fast determination of the RP of various array
configurations in a design phase.

The rest of the paper is organized as follows. In Section 2.1, we derive the hybrid scattering-
admittance operator of a brick, whereas in Section 2.2 we obtain the functional equations that describe
an antenna array. In Section 2.3 we derive the formula for the calculation of the admittance matrix of
the array. The numerical solution with the Method of Moments (MoM) and the eigencurrents is the
subject of Section 3. Finally, in Section 4, we examine an array of bow-tie antennas to validate the
strategy and to discuss the scaling of the total CPU time.

A time dependence in the form of exp(jωt) is implied and suppressed throughout.

2. FORMULATION

We consider an array of ND antennas made of perfect electric conductor (PEC) immersed in a
homogeneous background medium (labelled with ➀) and, in accordance with the LEGO philosophy,
we enclose each antenna in a brick. In this way, the host medium (labelled with ➁) that pads the inside
of a brick and the background medium clearly have the same constitutive parameters. The more general
case of antennas contained in a dielectric slab can be treated by combining the scattering operator of an
interface [13] with the formulas derived in Section 2.1. In the following, we denote the kth brick with
Dk, k = 1, . . . , ND, and the boundary thereof with ∂Dk.

2.1. Hybrid Scattering-Admittance Operator of a Brick

To obtain the hybrid scattering-admittance operator, we start with the electric field integral equation
(EFIE) on the surface So of the antenna inside Dk, namely,[

XooJo
√
η1 + Pok q

i
k + V g

k ν̂ δγo/
√
η1

]
tan

= 0, on So, (1)

where

• η1 :=
√

μ1/ε1 is the intrinsic impedance of medium ➀ and, here, also of medium ➁;

• XooJo
√
η1 is the normalized secondary electric field produced by Jo, the equivalent electric surface

current over So; within a normalization factor, Xoo denotes the standard EFIE operator on So in a
homogeneous infinite space with the properties of medium ➀ [9, Table II];

• Pok q
i
k is the normalized secondary electric field produced by sources located outside Dk, and qik

represents the equivalent surface incident currents on ∂Dk [9, Eqn. (2)]; Pok is the propagator from
∂Dk to So [9, Table III].

• V g
k ν̂δγo/

√
η1 is the normalized impressed electric field in the delta-gap approximation of the antenna

port [10, Eqn. (14)], [15], and V g
k is the strength of the ideal voltage generator; γo is a line on So

that defines the antenna port, ν̂ is the unit vector tangential to So and locally perpendicular to γo,
and δγo denotes a one-dimensional Dirac’s distribution localized along γo.

Next, we observe that the equivalent surface scattered currents qsk on ∂Dk [9, Eqn. (2)] and the
current Iak flowing into the antenna port can be written as

qsk := (P s
kk)

−1Pk oJo
√
η1, Iak :=

∫
γo

dr ν̂ · Jo(r) =

∫
So

d2r δγo ν̂ · Jo(r), (2)

with the propagators P s
kk and Pk o defined in [9, Tables I and III]. Then, formally solving Eq. (1) for

Jo and inserting the result into Eq. (2) yields the relation between incident or impressed quantities and
secondary currents, which allows us to identify the desired hybrid scattering-admittance operator of Dk,
viz., [

qsk√
η1I

a
k/lo

]
=

[
Skk Hko

Hok η1Ỹkk

] [
qik

V g
k /(lo

√
η1)

]
, (3)
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with

Skk := −(P s
kk)

−1Pk oX
−1
oo Pok, Hko := −(P s

kk)
−1Pk oX

−1
oo (ν̂ δγo)lo, (4)

Hok := − 1

lo

∫
So

d2r ν̂ δγo · X−1
oo Pok, η1Ỹkk := −

∫
So

d2r ν̂ δγo · X−1
oo (ν̂ δγo), (5)

where Skk is the usual scattering operator of a passive brick [9, Eqn. (11)], Ỹkk the input admittance of
the array element considered in isolation, and lo the length of γo. The entries of the hybrid operator in

Eqs. (4) and (5) are dimensionless, whereas qs,ik ,
√
η1I

a
k/lo and V g

k /(lo
√
η1) carry the physical dimension

of a power wave per unit length. In the light of Eq. (3) LEGO bricks that contain a single-port antenna
can be thought as devices with two ports, namely, a continuously distributed port (the boundary ∂Dk)
and a lumped port (the line γo). The generalization to multi-port antennas inside Dk is then obvious,
but we shall not elaborate this topic any further.

2.2. Combination of Two or More Bricks

In order to model an array comprised of ND elements (see Fig. 2), we need to combine ND bricks
electromagnetically. This goal is accomplished in the same way as done in [9] by augmenting the
incident currents on ∂Dk in Eq. (3) with the contributions of the scattered currents that flow on the
boundaries ∂Dn, n = 1, . . . , ND, n �= k, of the remaining ND − 1 bricks. In symbols, this reads[

qsk√
η1I

a
k/lo

]
=

[
Skk Hko

Hok η1Ỹkk

] [
qik +

∑
n �=k Tkn q

s
n

V g
k /(lo

√
η1)

]
, k = 1, . . . , ND, (6)

where Tkn is the transfer operator from ∂Dn to ∂Dk, n �= k [9, Eqn. (15)]. After a few manipulations
the set of 2ND equations represented by Eq. (6) can be cast into a compact form as

qs = S qi +
1

lo
√
η1

(I− diag {Skk}T)−1diag {Hko} [V g] , S := (I− diag {Skk}T)−1diag {Skk} , (7)

√
η1

lo
[Ia] = diag {Hok} (qi + Tqs) + η1diag

{
Ỹkk

} 1

lo
√
η1

[V g] , (8)

where

• qs,i are abstract ND × 1 vectors with entries qs,ik [9, Eqn. (18)], and [Ia], [V g] are ND × 1 vectors of
antenna port currents (Iak) and voltages (V g

k );

• S is the total scattering operator of the bricks [9, Eqn. (17)], I is a suitable identity operator on the

composite surface ∪ND
k=1∂Dk, and T is the total transfer operator [10, Eqn. (12)], i.e., an abstract

ND ×ND matrix containing the transfer operators Tkn;

• the matrix constructor ‘diag {◦}’ builds a diagonal matrix out of the elements it acts on (here,
operators and scalars).

The functional Equations (7) and (8) represent the formulation of the array problem with LEGO,
and Eq. (7) extends the equations for passive bricks [9, Eqn. (16)]. In transmit mode, when the elements
are excited ([V g] assigned) and there is no external source (qi = 0), the first of Eq. (7) yields qs whereby
the radiated fields can be computed. In receive mode, when an impinging EM wave illuminates the
array (qi assigned) and the generators are switched off ([V g] = 0), Eq. (8) yields short-circuit currents
at the array ports. In fact, the first term in the right-hand side of Eq. (8) can be construed as a current
generator, whose strength is determined by the external sources as well as the remaining elements of
the array.

2.3. Admittance Matrix of an Antenna Array

The calculation of the ND ×ND admittance matrix [Y ] of the array requires using Eq. (8) to compute
the current Iak flowing into the kth antenna port when the ith antenna is energized with V g

i , and all the
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external sources are switched off (qik = 0). Consequently, the entry Yki of [Y ] formally reads

Yki :=
Iak
V g
i

∣∣∣∣ qik=0

V g
s =0

=
lo√
η1 V

g
i

ND∑
n=1
n �=k

HokTknq
s
n + Ỹkkδki, (9)

with δki the Kronecker delta, and i, s = 1, . . . , ND. As it is apparent from the first of Eq. (7) that qsn is
proportional to V g

i when qik = 0, the actual value of V g
i does not enter the formula (9), as expected of

a linear system. In fact, we can write Eq. (9) formally as

[Y ] :=
1

η1
diag {Hok}T(I− diag {Skk}T)−1diag {Hko}+ diag

{
Ỹkk

}
, (10)

on account of Eqs. (7) and (8). It is evident from Eq. (10) that the self-admittance Ỹkk of an array
element in isolation must be augmented with a term that factors in the multiple scattering between the
elements.

3. NUMERICAL SOLUTION

3.1. Reduction to a Weak form with the Method of Moments

To evaluate Eqs. (7), (8) and (10) in practice we apply the MoM in the form of Galerkin. Accordingly,
we model the surface of bricks and antennas with 3-D triangular tessellations (see Figs. 1(a) and 1(b)),

and we expand qs,ik (Jo) with sets of 2NF (NO) Rao-Wilton-Glisson (RWG) basis functions [9]. The
standard testing procedure with symmetric L2 inner products on ∂Dk and So provides us with the
algebraic counterparts of the operators in Eqs. (4) and (5), i.e.,

[Skk] := −[P s
kk]

−1 [Pko] [Xoo]
−1 [Pok] , [Hko] := −[P s

kk]
−1 [Pko] [Xoo]

−1 [u] lo, (11)

[Hok] := − [u]T [Xoo]
−1 [Pok] /lo, η1Ỹkk := − [u]T [Xoo]

−1 [u] , (12)

where [u] is the NO × 1 vector with entries

um :=

{
0 if γm �∈ γo,

lm if γm ∈ γo,
m = 1, . . . , NO, (13)

with lm denoting the length of γm, the mth (inner) edge of the mesh modelling the antenna surface So.
Hence, the length of the line γo introduced in the second of Eq. (2) is computed as lo =

∑
m um. It is

a simple matter to ascertain that the algebraic operators in Eqs. (11) and (12) are dimensionless. As
regards the size of the matrices in Eqs. (11) and (12), [P s

kk] is 2NF × 2NF , [Xoo] is NO ×NO, and [Pko],
[Pok] are 2NF ×NO, NO × 2NF , respectively.

With these intermediate results, we can write the weak form of Eqs. (7), (8) and (10) as follows:

[qs] = [S] [qi] + ([I]− blkdiag {[Skk]} [T ])−1blkdiag {[Hko]} [V g]
1

lo
√
η1

, (14)

[S] := ([I]− blkdiag {[Skk]} [T ])−1blkdiag {[Skk]} , (15)

[Ia] =
lo√
η1

blkdiag {[Hok]} (
[
qi
]
+ [T ] [qs]) + diag

{
Ỹkk

}
[V g] , (16)

[Y ] :=
1

η1
blkdiag {[Hok]} [T ] ([I]− blkdiag {[Skk]} [T ])−1blkdiag {[Hko]}+ diag

{
Ỹkk

}
, (17)

where the matrix constructor ‘blkdiag {◦}’ builds a block diagonal matrix out of the matrices it acts
on, [I] is the identity matrix of rank 2NFND, and

[
qs,i

]
are column vectors containing the 2NFND

expansion coefficients of qs,ik .
We conclude this part by commenting on how to choose the LEGO bricks for a model. Size and

shape can, in theory, be arbitrary. And yet, the practical choice is somewhat dictated by the geometry
of the problem at hand, because the bricks must entirely enclose an array element, nor can they intersect
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one another. Provided these constraints are respected, then one should try and minimize the number
of unknowns 2NF on a brick’s boundary. To this end, making a brick as small as possible would seem
logical; however, the mesh ought to be refined to accurately capture the fabric of the near fields around
the antenna, and this in turn would cause 2NF to increase. Then again, defining larger bricks makes
2NF increase proportionally, as ever more facets are required to ensure a constant mesh density. Thus,
an optimum size and shape for a given problem likely exists, though finding out what that is may not
be easy in general. On a related score, in the context of the eigencurrents expansion (Section 3.2) the
variation of the rank of [Skk] is discussed in [16] as a function of size and shape of a brick.

3.2. Compression with Eigencurrents Expansion

The actual evaluation of Eqs. (14)–(17) entails filling and inverting [I]− blkdiag {[Skk]} [T ], which can
be a large matrix even for the analysis of an array with a moderate number of elements. Therefore, we
introduce specialized MBFs on the boundaries ∂Dk, and carry out a change of basis so as to compress
[I] − blkdiag {[Skk]} [T ] and other matrices conformably. This task is accomplished by employing the
eigencurrents [9], i.e., the eigenvectors of the algebraic scattering operators [Skk] in Eq. (11).

To begin with, we consider the spectral decomposition of [Skk], namely,

[Skk] = [Vkk] diag
{
λ(k)
p

}
[Vkk]

−1 , (18)

with the eigenvalues and relative eigenvectors ordered so that |λ(k)
p | ≥ |λ(k)

p+1|, p = 1, . . . , 2NF . Since

[Skk] is rank-deficient [16, 17] and, on account of Eq. (18), the weak form of the first of Eq. (6) reads

[qsk] = [Vkk] diag
{
λ(k)
p

}
[Vkk]

−1

⎛
⎜⎝[qik] +

ND∑
n=1
n �=k

[Tkn] [q
s
n]

⎞
⎟⎠+ [Hko]

V g
k

lo
√
η1

, (19)

we stipulate that only the eigencurrents associated with the first NC ≤ min{2NF , NO} eigenvalues
contribute to the multiple scattering among the bricks and must be employed to represent [qsk].

Next, we form the matrices [V
(k)
C ] ([U

(k)
C ]) with the first NC columns (rows) of [Vkk], ([Vkk]

−1), and
we also define the following block-diagonal matrices

[VC ] := blkdiag
{
[V

(k)
C ]

}
, [UC ] := blkdiag

{
[U

(k)
C ]

}
, (20)

then by definition
[UC ] [VC ] = [IC ] , (21)

where [IC ] is the identity matrix of rank NDNC . With these positions, we have

[qs] = [VC ] [q̃
s] , blkdiag {[Skk]} = [VC ] [ΛC ] [UC ] , (22)

where [ΛC ] = blkdiag
{
diag

{
λ
(k)
p

}}
, p = 1, . . . , NC . To proceed, by taking advantage of Eq. (15), we

rewrite Eq. (14) as follows

([I]− blkdiag {[Skk]} [T ]) [qs] = blkdiag {[Skk]} [qi] + blkdiag {[Hko]} [V g]
1

lo
√
η1

, (23)

and then as

([I]− [VC ] [ΛC ] [UC ] [T ]) [VC ] [q̃
s] = [VC ] [ΛC ] [UC ] [q

i] + blkdiag {[Hko]} [V g]
1

lo
√
η1

, (24)

on account of Eq. (22). By left multiplying by [UC ] we find, in view of Eq. (21),

([IC ]− [ΛC ] [UC ] [T ]) [VC ] [q̃
s] = [ΛC ] [UC ] [q

i] + [UC ] blkdiag {[Hko]} [V g]
1

lo
√
η1

, (25)

in which the matrix in the left-hand side has now rank NCND 	 2NFND. Formally inverting Eq. (25)
and reverting back to the original sets of basis functions leads to

[S] := [VC ] ([IC ]− [ΛC ] [UC ] [T ])
−1 [ΛC ] [UC ] , (26)
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[qs] = [S] [qi] + [VC ] ([IC ]− [ΛC ] [UC ] [T ])
−1 [UC ] blkdiag {[Hko]} [V g]

1

lo
√
η1

. (27)

In like manner, to evaluate the admittance matrix [Y ] through Eq. (17), we consider the expression

[Y ] :=
1

η1
blkdiag {[Hok]} [T ] [VC ] ([IC ]− [ΛC ] [UC ] [T ] [VC ])

−1 [UC ] blkdiag {[Hko]}+ diag
{
Ỹkk

}
, (28)

which is based on Eq. (27) with [qi] = 0.
From a numerical standpoint, to avoid storing and inverting large matrices, we proceed as follows:

• To fill the matrix [IC ] − [ΛC ] [UC ] [T ] [VC ] we evaluate matrices of the form [Λ
(k)
C ][U

(k)
C ] [Tkn] [V

(n)
C ]

by examining two bricks at a time; more importantly, the inversion of [IC ]− [ΛC ] [UC ] [T ] [VC ] can
be done through LU factorization.

• To fill the matrix blkdiag {[Hok]} [T ] [VC ], which is size ND ×NDNC , we compute “small” matrices

[Hok] [Tkn] [V
(n)
C ].

• To fill [UC ] blkdiag {[Hko]}, which is size NCND ×ND and block-diagonal, we only need compute

and store the ND column vectors [U
(k)
C ] [Hko].

• To determine [qs] we first compute the scattered currents coefficients [q̃s] in the eigencurrents basis
from Eq. (25), and then we revert to the original basis by virtue of Eq. (22); in this way, the actual
calculation of [S] in Eq. (26) is avoided.

4. NUMERICAL EXAMPLE

The extended LEGO described in the previous sections, along with the numerical solution with the MoM
and the compression with the eigencurrents, has been implemented in a FORTRAN code (cf. [14]). The
latter can solve disconnected antenna arrays by combining LEGO bricks which contain a single-port PEC
antenna with arbitrary shape. To discuss the performance of the code, we present selected simulation
results for planar arrays comprised of bow-tie antennas in free space.

The triangular tessellation of a bow-tie and the dimensions thereof are presented in Fig. 1(a),
whereas the mesh of the cuboidal brick which encloses a bow-tie is pictured in Fig. 1(b); the dimensions
of a brick are 15 × 15 × 10.5 mm. For the numerical solution (Section 3.1), we introduce NO = 232
RWG functions on a bow-tie antenna and 2NF = 2592 RWG functions on a brick. By using the LEGO
brick as a building block, we can easily solve antenna arrays of different shape and size by computing
the hybrid scattering-admittance operator (Section 2.1) only once for a given operational frequency.
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00
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1

21

Figure 2. LEGO for antenna arrays: a planar regular
arrangement of 5× 5 bow-tie antennas (Fig. 1(a)); the
separation along both lattice directions is 15mm.

Figure 3. LEGO for antenna arrays:
radiated electric field of the array in Fig. 2
at f = 27 GHz versus the elevation angle;
(�), (◦) LEGO method, (−) reference.
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For instance, shown in Fig. 2 is a realization comprised of ND = 5 × 5 = 25 elements arranged
in a square lattice. The array sits in the xOy plane and the separation of the antenna elements
along both directions is 15 mm. Correspondingly, the total size of the matrix [I] − blkdiag {[Skk]} [T ]
appearing in (15) and (17) is 2NFND = 2592×25 = 64800. Thanks to the eigencurrents expansion with
NC = 150 eigencurrents per brick the rank of the compressed matrix in Eqs. (26) and (28) becomes
NCND = 3750. This case study shall also serve as an example of validation for the overall approach;
the pertinent reference results have been obtained by solving a standard EFIE over the total surface of
the antennas to compute the electric surface current density induced thereon, and the size of the system
for such computation is NOND = 232× 25 = 5800.

We have analyzed the array of Fig. 2 in the frequency range f ∈ [10, 35] GHz. Plotted in Fig. 3
is the normalized electric field radiated by the array in the principal planes at f = 27GHz, when all
the elements are energized with V g

k = 1V and the external sources are switched off (see Eq. (14)); the
reference solutions have been drawn as solid lines. At this frequency the inter-element separation is
about 1.35 times the wavelength in free space, and the array exhibits two full and two partial grating
lobes. The impedance matrix [Z] of the array can be obtained by inverting [Y ] computed through Eq.
(28). The behaviour of selected self- and trans-impedances versus f is plotted in Fig. 4 where, again,
the continuous lines represent the reference solution; as can be seen, the elements resonate at f = 27.

(a) (c)

(b) (d)

Figure 4. LEGO for antenna arrays: (a), (b) real and imaginary parts of the self-impedance versus
frequency for elements 1 and 13 in Fig. 2; (c), (d) real and imaginary parts of trans-impedance versus
frequency for elements indicated in Fig. 2; (�), (◦), (
), (�) LEGO method, (−) reference.

All in all, the excellent agreement between the reference solution and the results obtained through
Eqs. (27) and (28) validates the LEGO approach as well as the compression with the eigencurrents.

Next, we have investigated how the CPU time scales with the size of the problem, i.e., the number
of bricks ND. To this purpose, we have solved planar arrays comprised of increasing numbers of bow-
ties (Fig. 1(a)). However, we have modelled the boundary of the enclosing bricks with a coarser mesh,
and also employed fewer eigencurrents in Eqs. (27) and (28). This expedient allows us to speed up the
solution process and still to highlight patterns, if any, of the overall CPU time as a function of ND.
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To be specific, we have introduced NO = 232 RWG functions over each antenna and 2NF = 1152 over
each brick, and we have chosen NC = 10 eigencurrents for the compression. The calculations have been
carried out on a 64-bit Windows-based system with an Intel Core i7 3.4-GHz processor and 16 GB
RAM.

The CPU times are listed in Table 1 in correlation with various characteristic sizes of the problem,
including the number of transfer matrices [Tnk] ND(ND − 1), the total number of unknowns 2NFND,
and the total number of eigencurrents NCND. The role of the eigencurrents in reducing the size of
the problem becomes especially manifest, if we compare the rank (2NDNF ) of the original scattering
matrix with the rank (NDNC) of the deflated one. Additional insight can be gained from Fig. 5, which
plots the CPU time required to solve the arrays as a function of ND. Apparently, the overall CPU time
grows only linearly, even though the number of transfer matrices grows as O(N2

D). Such behavior is a
consequence of having exploited the translational symmetry of the problem, which causes the occurrence
of sub-sets of identical transfer matrices. Since only one transfer matrix per sub-set has actually to be
computed, the total number of transfer matrices effectively scales as O(ND) (cf. [9, 18]).

Table 1. CPU times vs characteristic sizes of the LEGO model.

ND ND(ND − 1) 2NFND NCND Time [s]

4 12 4608 40 118

25 600 28800 250 384

49 2352 56448 490 636

81 6480 93312 810 654

100 9900 115200 1000 694

121 14520 139392 1210 768

144 20592 165888 1440 772

169 28392 194688 1690 792

196 38220 225792 1960 869

225 50400 259200 2250 944

Figure 5. LEGO for antenna arrays: CPU time vs number of bricks (for visualization’s sake the
markers are joined with a dashed line). Insets: two realizations of the array.
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5. CONCLUSION AND OUTLOOK

We have proposed an extension of the LEGO method for the analysis of disconnected PEC antennas
in a homogeneous background medium. The newly derived functional equations Eq. (7) allow fitting
general array problems within a unified framework. With the aid of a numerical example, we have
shown that the formulation based on scattering-admittance operators is viable, efficient and yields the
same results as the direct solution of a suitable EFIE with the baseline MoM. At a first glance, defining
bricks and computing scattering-admittance operators may seem an unnecessary complication vis-à-
vis a direct approach in tandem with MBFs. And yet, LEGO bricks can provide better conditioning
and versatility: the former, because the mesh over a brick’s surface can be made uniform, the latter,
because the bricks can be re-used and combined arbitrarily to a large extent. For instance, a simplified
preliminary design of a complicated antenna array with LEGO turns out handy for the optimization of
position and number of elements in a sparse array configuration.

Computing the radiated fields is no different than determining the scattered fields in the standard
LEGO [9], and it essentially requires the Fourier transform of the currents qsk which are given as the
linear combination of 2NF RWG functions on ∂Dk. Even though the total number of unknowns is
2NFND, we need only compute the Fourier transform of NF RWG functions, because a) electric and
magnetic currents on ∂Dk are expanded on the same set [9, Section IV.B], and b) the Fourier transforms
of shifted RWG functions defined on different bricks differ solely for a phase factor. Thus, the relevant
computation time is determined by NF plus an overhead for the linear combination which, of course,
does change with ND. We observe that, since the number of eigencurrents NC 	 2NF , it may be worth
expressing the far fields as a combination of the fields radiated by each eigencurrent. Other techniques,
such as hybridization of uniform geometrical theory of diffraction and MoM [19], or the adaptive cross
approximation [20] could also be applied to LEGO starting with the currents qsk on ∂Dk.
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