Vol. 49
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-07-18
Preliminary Results on Estimation of the Dispersive Dielectric Properties of an Object Utilizing Frequency-Dependent Forward-Backward Time-Stepping Technique
By
Progress In Electromagnetics Research M, Vol. 49, 61-68, 2016
Abstract
In this paper, a Frequency-Dependent Forward-Backward Time-Stepping (FD-FBTS) inverse scattering technique is used for reconstruction of homogeneous dispersive object. The aim of the technique is to reconstruct the relative permittivity at infinite frequency, static relative permittivity and static conductivity of the homogeneous dispersive object simultaneously. The technique utilizes iterative finite-difference time-domain (FDTD) method for solving inverse scattering problem in time domain. The minimization of the cost functional is carried out utilizing Dai-Yuan nonlinear conjugate-gradient algorithm. The Fréchet derivatives of the augmented cost functional are derived analytically with respect to scatterer properties. Numerical results for reconstruction of two-dimensional homogeneous dispersive illustrate the performance of the proposed technique.
Citation
Shi Wei Ng, Kismet Anak Hong Ping, Shafrida Sahrani, Mohamad Hamiruce Marhaban, Mohd Iqbal Sariphn, Toshifumi Moriyama, and Takashi Takenaka, "Preliminary Results on Estimation of the Dispersive Dielectric Properties of an Object Utilizing Frequency-Dependent Forward-Backward Time-Stepping Technique," Progress In Electromagnetics Research M, Vol. 49, 61-68, 2016.
doi:10.2528/PIERM16051907
References

1. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Med. Phys., Vol. 37, 4210-4226, 2010.
doi:10.1118/1.3443569

2. Hassan, M. and A. M. El-Shenawee, "Review of electromagnetic techniques for breast cancer detection," IEEE Rev. Biomed. Eng., Vol. 4, 103-118, 2011.
doi:10.1109/RBME.2011.2169780

3. Winters, D. W., J. D. Shea, P. Kosmas, B. D. van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Trans. Med. Imaging, Vol. 28, No. 7, 969-981, 2009.
doi:10.1109/TMI.2008.2008959

4. Winters, D. W., E. J. Bond, B. D. van Veen, and S. C. Hagness, "Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique," IEEE Trans. Antennas Propag., Vol. 54, No. 11, 3517-3528, 2006.
doi:10.1109/TAP.2006.884296

5. Deng, Y. and X. Liu, "Electromagnetic imaging methods for nondestructive evaluation applications," Sensors, Vol. 11, No. 12, Basel, Switzerland, 2011.

6. Pastorino, M., S. Caorsi, and A. Massa, "A global optimization technique for microwave nondestructive evaluation," IEEE Transactions on Instrumentation and Measurement, Vol. 51, No. 4, 666-673, 2002.
doi:10.1109/TIM.2002.803084

7. Rufus, E. and Z. C. Alex, "Microwave imaging system for the detection of buried objects using UWB antenna - An experimental study," PIERS Proceedings, 786-788, Kuala Lumpur, Malaysia, Mar. 27-30, 2012.

8. Crocco, L., F. Soldovieri, N. J. Cassidy, and G. Prisco, "Early-stage leaking pipes GPR monitoring via microwave tomographic inversion," J. Appl. Geophys., Vol. 67, No. 4, 270-277, 2009.
doi:10.1016/j.jappgeo.2008.09.006

9. Xu, H., T. Li, and Y. Sun, "The application research of microwave imaging in nondestructive testing of concrete wall," 2006 6th World Congress on Intelligent Control and Automation, Vol. 1, 5157-5161, 2006.
doi:10.1109/WCICA.2006.1713374

10. Davis, S. K., E. J. Bond, X. Li, S. C. Hagness, and B. D. van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer: Beamformer design in the frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 357-381, 2003.
doi:10.1163/156939303322235860

11. Guo, B., J. Li, H. Zmuda, and M. Sheplak, "Multifrequency microwave-induced thermal acoustic imaging for breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 54, No. 11, 2000-2010, 2007.
doi:10.1109/TBME.2007.895108

12. Curtis, C. and E. Fear, "Beamforming in the frequency domain with applications to microwave breast imaging," 2014 8th European Conference on Antennas and Propagation (EuCAP), 72-76, 2014.
doi:10.1109/EuCAP.2014.6901695

13. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 203-215, 1997.
doi:10.1109/8.560338

14. Caorsi, S., G. L. Gragnani, and M. Pastorino, "Two-dimensional microwave imaging by a numerical inverse scattering solution," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 981-989, 1990.
doi:10.1109/22.57321

15. Rekanos, T. T. and T. D. Tsiboukis, "A combined finite element - Nonlinear conjugate gradient spatial method for the reconstruction of unknown scatterer profiles," IEEE Trans. Magn., Vol. 34, No. 5, 2829-2832, 1998.
doi:10.1109/20.717658

16. Papadopoulos, T. G. and I. T. Rekanos, "Time-domain microwave imaging of inhomogeneous Debye dispersive scatterers," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 1197-1202, 2012.
doi:10.1109/TAP.2011.2173150

17. Papadopoulos, T. G., T. I. Kosmanis, and I. T. Rekanos, "Microwave imaging of dispersive scatterers using vectorial lagrange multipliers," PIERS Proceedings, 1926-1931, Prague, Jul. 6-9, 2015.

18. Takenaka, T., H. J. H. Jia, and T. Tanaka, "An FDTD approach to the time-domain inverse scattering problem for na lossy cylindrical object," 2000 Asia-Pacific Microw. Conf. Proc. (Cat. No. 00TH8522), Vol. 8, No. 2, 3-6, 2000.

19. Takenaka, T., H. Jia, and T. Tanaka, "Microwave imaging of electrical property distributions by a forward-backward time-stepping method," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 12, 1609-1626, 2000.
doi:10.1163/156939300X00383

20. Ping, K. A. H., T. Moriyama, T. Takenaka, and T. Tanaka, "Two-dimensional Forward-Backward Time-Stepping approach for tumor detection in dispersive breast tissues," 2009 Mediterrannean Microwave Symposium (MMS), 1-4, 2009.
doi:10.1109/MMS.2009.5409833

21. Johnson, J. E., T. Takenaka, K. Ping, S. Honda, and T. Tanaka, "Advances in the 3-D Forward-Backward Time-Stepping (FBTS) inverse scattering technique for breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 56, No. 9, 2232-2243, 2009.
doi:10.1109/TBME.2009.2022635

22. Ng, S. W., K. A. H. Ping, L. S. Yee, W. Z. A. Wan Azlan, T. Moriyama, and T. Takenaka, "Reconstruction of extremely dense breast composition utilizing inverse scattering technique integrated with frequency-hopping approach," ARPN J. Eng. Appl. Sci., Vol. 10, No. 18, 8479-8484, 2015.

23. Yong, G., K. A. H. Ping, A. S. C. Chie, S. W. Ng, and T. Masri, "Preliminary study of forward-backward time-stepping technique with edge-preserving regularization for object detection applications," 2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), 77-81, 2015.
doi:10.1109/ICBAPS.2015.7292222

24. Dai, Y. H. and Y. Yuan, "A nonlinear conjugate gradient method with a strong global convergence property," SIAM Journal on Optimization, Vol. 10, No. 1, 177-182, 1999.
doi:10.1137/S1052623497318992