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Abstract—In this paper, a Frequency-Dependent Forward-Backward Time-Stepping (FD-FBTS)
inverse scattering technique is used for reconstruction of homogeneous dispersive object. The aim of the
technique is to reconstruct the relative permittivity at infinite frequency, static relative permittivity and
static conductivity of the homogeneous dispersive object simultaneously. The technique utilizes iterative
finite-difference time-domain (FDTD) method for solving inverse scattering problem in time domain.
The minimization of the cost functional is carried out utilizing Dai-Yuan nonlinear conjugate-gradient
algorithm. The Fréchet derivatives of the augmented cost functional are derived analytically with
respect to scatterer properties. Numerical results for reconstruction of two-dimensional homogeneous
dispersive illustrate the performance of the proposed technique.

1. INTRODUCTION

Microwave tomography is an imaging technique which utilizes ultrawideband (UWB) microwave
frequencies to solve an electromagnetic inverse scattering problem. This technique attracts significant
interest for researchers due to the numerous applications in medical imaging [1–4], non-destructive
evaluation [5–7], geophysical prospecting [8] and civil engineering [9]. In microwave tomography, low-
power and short-duration microwave pulses will be transmitted from an array of antennas towards
the scatterer, and the resulting scattered microwave signals are measured at the locations around
the scatterer domain. The measurement data are then inverted in order to reconstruct the spatial
distribution of the electromagnetic properties of the scatterer. The electromagnetic inverse scattering
problem is nonlinear because scattered field is a nonlinear function of the scatterer properties. Moreover,
the problem is an ill-posed problem where the ill-posedness appears as a result of the operator that maps
the scatterer properties to the scattered field is compact.

The subject of great interest in microwave inverse scattering is the selection of the time-dependence
of the incident fields. Besides this approach, there are many methodologies based on frequency-
domain have been proposed [10–12]. In frequency-domain approach, the incidences are assumed to
be monochromatic and the popular methods such as method of moments (MoM) [13, 14] and the finite-
element method (FEM) [15], are utilized for field analysis of the frequency-domain approach. This
approach has significant shortcoming when the frequency of excitation increases for better resolution of
the reconstructed scatterer profiles. Hence, the inversion becomes highly nonlinear and the proposed
algorithms may converge in local minima or even worse diverge. There are two approaches able to
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cope with shortcoming of monochromatic incidences wave approach in order to capture more detailed
reconstructed scatterer profiles. First approach is using a sequence of distinct frequencies of excitation
in the implementation of frequency-domain methods [1, 3]. Field analysis in time domain is required by
utilizing broadband incident fields for the second approach [16–18].

In time domain inversion techniques, the bandwidth of the excitation is the key feature for
the reconstruction resolution where the resolution of the reconstruction is bounded by the shortest
effective wavelength of the excitation field. Time domain microwave imaging is not limited to enhance
the reconstruction resolution of nondispersive scatterers, but it is also capable to reconstruct the
spatial distribution of the characteristic parameters of dispersive scatterers. Hence, the time-domain
representation of the complex relative permittivity of a scatterer is also possible to be reconstructed.

The conventional Forward-Backward Time-Stepping (FBTS) technique is reported by Takenaka et
al. [19–23] and is focused on nondispersive cases in which reconstructing the relative permittivity and
conductivity of the scatterers. In nondispersive cases, the dielectric properties of the scatterers are
independent of the frequency used. Due to the frequency dependence of the dielectric properties of the
object modelled by using single-pole Debye dispersion equation hence the conventional FBTS is extended
to Frequency-Dependent FBTS (FD-FBTS) in order to estimate the dispersive dielectric properties of
the object.

In this paper, a microwave inverse scattering technique developed in time domain for reconstruction
of the characteristic parameters of Debye scatterers is presented. The Dai-Yuan conjugate gradient
(DYCG) algorithm [24] utilized the Fréchet derivatives of an augmented cost functional with respect to
the scatterer properties in order to evaluate the spatial distribution of the scatterer properties under
investigation. The finite-difference time-domain (FDTD) method is utilized in computing the calculated
total field at a set of positions surrounding the scatterer domain in order to estimate the scatterer profiles.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

2.1. Debye Dispersion Model

The complex relative permittivity of an inhomogeneous scatterer exhibiting Debye dispersion is given
by

ε∗r(ω) = ε∞ +
εs − ε∞
1 + jωτ0

− j
σs

ωε0
(1)

where ε∞, εs, σs and τ0 are the relative permittivity at ω = ∞ and that at ω = 0, static conductivity
and the Debye relaxation time constant. ω is the angular frequency.

The aftereffect function χ(t) correspond to the second term of the right side of Eq. (1) is given by

χ(t) = F−1

[
εs − ε∞
1 + jωτ0

]
=

(
εs − ε∞

τ0

)
exp

(
− t

τ0

)
U(t) (2)

where F−1 denotes inverse Fourier transform and U(t) is the unit step function. Assume that ε∞ and
εs depend on positions �r and we denote them as εs(�r) and ε∞(�r) while τ0 is independent of r. Then,
the aftereffect function is denoted as

χ (�r, t) = [εs (�r) − ε∞ (�r)]
1
τ0

exp
(
− t

τ0

)
U(t) (3)

We assume that the Debye scatterer is nonmagnetic and lies within the scatterer domain S. The
domain S is excited by m incident waves, while for each incidence the electric field is measured at
n positions around the scatterer for the time interval [0, T ]. Hence, a set of M × N electric field
measurements is obtained, which are denoted as Emn where m = 1, . . . ,M and n = 1, . . . , N . We note
that the time t of measurement is selected in a way that the measured field at the farthest receiver has
significantly faded out.

2.2. Cost Functional

Our objective is to estimate the three parameters characterizing a Debye medium, i.e., ε∞, χ(t) and σs,
by inverting the electric field measurements ṽm(rr

n, t). The inverse problem is formulated as optimization
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problem with the following cost functional that needs to be minimized:

Q(p) =
∫ cT

0

M∑
m=1

N∑
n=1

Kmn(t) |vm (p; �rr
n, t) − ṽm (�rr

n, t)|2 d(ct) (4)

where p is a medium parameter vector function

p = (ε∞ (�r) χ (�r, t) σs (�r))t

Kmn(t) is a non-negative weighting function which takes a value of zero at time t = T (T is the time
duration of the measurement), and vm(p; �rr

n, t) and ṽm(�rr
n, t) are the calculated electromagnetic fields

for an estimated medium parameter vector p and the measured electromagnetic fields due to mth source,
respectively.

2.3. Maxwell’s Equation for the Estimated Fields

For simplicity, only dielectric dispersive case is considered in this paper. Maxwell’s equations are given
in matrix form as

Lv = s (5)

where

v = ( Ex Ey Ez Hx Hy Hz )t (6)

s = ( Jx Jy Jz JMx JMy JMz )t (7)

The differential operator L is defined by

Lv ≡ Ā
∂v
∂x

+ B̄
∂v
∂y

+ C̄
∂v
∂z

− F̄
∂v
∂t

− ∂

∂t

(
Ḡ ∗ v

) − K̄v (8)

where Ā, B̄ and C̄ are 6 × 6 constant matrices

Ā =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

B̄ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

C̄ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

(9a)
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and F̄ and Ḡ are 6 × 6 matrix consisting of the tensor permittivity and permeability, and K̄ a 6 × 6
matrix consisting of the tensor electric and magnetic conductivities are given by

F̄ (�r) =

⎛
⎜⎜⎜⎜⎜⎝

ε0ε∞ (�r) 0 0 0 0 0
0 ε0ε∞ (�r) 0 0 0 0
0 0 ε0ε∞ (�r) 0 0 0
0 0 0 μ (�r) 0 0
0 0 0 0 μ (�r) 0
0 0 0 0 0 μ (�r)

⎞
⎟⎟⎟⎟⎟⎠

Ḡ (r̄, t) =

⎛
⎜⎜⎜⎜⎜⎝

ε0χ (�r, t) 0 0 0 0 0
0 ε0χ (�r, t) 0 0 0 0
0 0 ε0χ (�r, t) 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

K̄ (�r) =

⎛
⎜⎜⎜⎜⎜⎝

σ (�r) 0 0 0 0 0
0 σ (�r) 0 0 0 0
0 0 σ (�r) 0 0 0
0 0 0 σM (�r) 0 0
0 0 0 0 σM (�r) 0
0 0 0 0 0 σM (�r)

⎞
⎟⎟⎟⎟⎟⎠

(9b)

Parameter ε0 is the permittivity of the free space. Parameter ε∞ is the relative permittivity of the
material at infinite frequency.

We assume that the currents are generated at time t = 0 and there is no electromagnetic field
before the time t = 0. Then, the lower limit of the integration in Eq. (8) becomes zero.

2.4. Fréchet Derivatives

The Fréchet derivatives of the cost functional with respect to the scatterer properties are obtained from
the terms of Q′(p)δp that include the first-order variations of the scatterer properties. In particular,
the Fréchet derivatives are given by

gε∞ = 2
∫ cT

0

M∑
m=1

3∑
i=1

[
wmi (p; r, t)

∂

∂(ct)
vmi (p; r, t)

]
d(ct) (10)

gχ(t) = 2
∫ cT

0

M∑
m=1

3∑
i=1

[
∂vmi (p; r, t)

∂(ct)
⊗ wmi (p; r, t)

]
1
τ0

exp
(
− t

τ0

)
d(ct) (11)

gσs = 2
∫ cT

0

M∑
m=1

3∑
i=1

[wmi (p; r, t) vmi (p; r, t)] d(ct) (12)

The derivatives in Eqs. (10)–(12) are utilized by conjugate-gradient optimization algorithm to
reconstruct ε∞, χ(t) and σs.

3. FREQUENCY-DEPENDENT FORWARD-BACKWARD TIME-STEPPING
TECHNIQUE

The Frequency-Dependent Forward-Backward Time-Stepping (FD-FBTS) technique is used to solve
the inverse scattering problems utilizing the broadband microwave signals in time domain. It possesses
the potential to reconstruct images which provide useful quantitative information about the location,
shape and the internal composition in the region of interest. FD-FBTS is utilized to reconstruct the
dispersive dielectric properties of the object modelled by using Debye dispersion equation which is
frequency dependent.
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Figure 1. Configuration of the FD-FBTS in 2-D FDTD scheme.

The purpose of this technique is to resolve the shape, location and electric properties of
any electromagnetic inverse scattering problem. The electric properties include the permittivity,
permeability, electric conductivity and magnetic conductivity. Figure 1 shows a typical configuration
of an active microwave tomography setup for FD-FBTS inverse scattering problem. The object is
assumed to be embedded in a free space. The object is illuminated successively by M short pulsed
waves generated by current sources sm(�r, t) located at �r = �rt

m (m = 1, 2, . . . ,M). The 16 antennas
shown in Figure 1 will take turn to transmit a gaussian pulse towards the region of interest (ROI) one
at a time while the remaining antennas will become the receivers.

The weighty challenge in solving inverse scattering problem is reconstructing the electric properties’
profile utilizing the knowledge of the transient field data measured at several observation points
�r = �rt

n (n = 1, 2, . . . , N) for each illumination. For the initial condition, the currents are assumed to be
generated at time t = 0 and there are no electromagnetic fields found before time t = 0. Hence, the
total electromagnetic fields vm(�r, t) for the mth current source sm(�r, t) satisfy the following Maxwell’s
equation:

Lvm = sm (13)

Under zero initial condition for
vm (r, 0) = 0 (14)

where L is the Partial Differential Equation operator of Maxwell’s equations.
To initialize the FD-FBTS procedure, an optimization problem is formulated in the form of cost

functional Equation (4) to be minimized.
In FD-FBTS technique, the error is calculated with the difference between measured and calculated

microwave scattering data in time domain at each antenna for every combination as mentioned in
Equation (4). The gradient of the error functional with respect to p is calculated by using a
forward Finite-Difference Time-Domain (FDTD) computation. Then, a corresponding adjoint FDTD
computation is carried out by exploiting the residual received signals as equivalent sources which are
reversed in time. In FD-FBTS, Dai Yuan conjugate gradient method is used for optimization technique
to solve the inverse scattering problem.

4. RESULTS AND DISCUSSIONS

In this research, we use a simple circular object embedded within a circular region of interest. The
object is then surrounded by 16 antennas which will act as transmitter and receivers in turns. In the
FD-FBTS reconstruction algorithm, the grid size for the FDTD lattice we used was 1mm× 1mm while
the excitation signal used was sinusoidally modulated Gaussian pulse with center frequency, fc = 2 GHz
with bandwidth of 1.3 GHz. The FDTD lattice consists of a layer of Convolutional Perfectly Matched
Layer (CPML) with thickness of 15 mm at the borders of the FDTD lattice in order to prevent reflections
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of the signal at the boundary of the FDTD lattice. The FD-FBTS algorithm was simulated up to 100
iterations utilizing 16 antennas to reconstruct the embedded object.

The size for the region of interest (ROI) is set to 80 mm in diameter while the size for the object is
set to 10 mm in diameter. The electrical properties for the ROI and object are summarized in Table 1.

Table 1. Electrical properties of the region of interest and object.

εs ε∞ σs τ

Region of Interest 10.00 7.00 0.15 7.00e-12
Object 21.57 6.14 0.31 7.00e-12

(a) (b) (c)

Figure 2. Original profiles of the model used (a) relative permittivity at infinite frequency, (b) static
relative permittivity, (c) static conductivity.

(a) (b) (c)

(d) (e) (f)

Figure 3. Reconstructed profiles of the model used (a) relative permittivity at infinite frequency, (b)
static relative permittivity, (c) static conductivity, (d) cross-sectional view of relative permittivity at
infinite frequency at the axis x = 110, (e) cross-sectional view of static relative permittivity at the axis
x = 110, (f) cross-sectional view of static conductivity at the axis x = 110.
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The foundation of this approach is formulated utilizing Debye equation as expressed in Equation (1).
Figure 2 illustrates the original profiles of the circular model used in this work. Figure 3(a) shows

the reconstructed relative permittivity at infinite frequency and indicating that the shape and size of the
object is able to be detected and reconstructed for relative permittivity at infinite frequency. Figure 3(d)
shows the cross-sectional view of the reconstruction Figure 3(a) at the axis x = 110 which is at the
center point.

Figure 3(b) shows the reconstructed static relative permittivity in which the object’s shape and
size are reconstructed. Figure 3(e) shows the cross-sectional view of the reconstruction Figure 3(b) at
the axis x = 110 which is at the center point.

Figure 3(c) shows the reconstructed static conductivity in which the size and shape of the embedded
object are able to be detected and reconstructed. Figure 3(f) shows the cross-sectional view of the
reconstruction Figure 3(c) at the axis x = 110 which is at the center point.

The reconstruction of the three electrical properties have been analysed and the mean square
error (MSE) are calculated respectively. The MSE of the reconstructed electrical properties are 0.0761,
0.6485 and 0.00019428 for relative permittivity at infinite frequency, static relative permittivity and
static conductivity, respectively.

5. CONCLUSIONS

The iterative FD-FBTS algorithm can be used to resolve the dispersive electrical properties of an inverse
scattering problem using broadband microwave signal in time domain. The shape and size of a simple
embedded object are reconstructed in all three dispersive electrical properties.
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