Vol. 69
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-09-14
Utilization of Riemann-Silberstein Vectors in Electromagnetics
By
Progress In Electromagnetics Research B, Vol. 69, 103-116, 2016
Abstract
Electromagnetic field modal expansion is traditionally an effective technique for solving Maxwell's Equations for numerous high-frequency engineering problems. In this paper, an alternative form of electromagnetic field representation is described. It is based on the Riemann-Silberstein vectors, which are a linear combination of the electric and magnetic field vectors. Utilizing such combination in homogeneous space, Maxwell's Equations are converted into a system of two independent equations. Under these circumstances, each vector describes the total electromagnetic field of an ideal circular polarization. Electromagnetic fields are simply expressed in the form of the Riemann-Silberstein vectors using the helical coordinate system and special functions, which form a set of generalized spherical harmonics. The new representation of vector spherical harmonics differs in simplicity and symmetry while having a more physically apparent expression. The amount of computational work is reduced due to the initial independence of the Riemann-Silberstein vectors. The purpose of this paper is to show the efficiency of a new approach that is based on Riemann-Silberstein vector field representation and spherical wave expansion.
Citation
Igor V. Belkovich, and Boris L. Kogan, "Utilization of Riemann-Silberstein Vectors in Electromagnetics," Progress In Electromagnetics Research B, Vol. 69, 103-116, 2016.
doi:10.2528/PIERB16051809
References

1. Beltrami, E., "Considerazioni idrodinamiche," Rendiconti del reale Instituto Lombardo, t.XXII, 121-130, Milano, 1889.

2. Gromeka, I., "Some cases of incompressible fluids motion," Scientific notes of the Kazan University, 1881, I. Gromeka, Collected works, 76-148, AN USSR, Moscow, 1952 (in Russian).

3. Silberstein, L., "Elektromagnetische Grundgleichungen in bivectorieller Behandlung, (Basic electromagnetic equations in bivectorial form)," Ann. D. Phys., Vol. 327, 876-880, 1907.
doi:10.1002/andp.19073270313

4. Weber, H., "Die parttiellen Di®erential-Gleichungen der mathematischen Physik nach Riemann's Vorlesungen bearbeitet von Heinrich Weber (Braunschweig: Friedrich Vieweg und Sohn),", 348, 1901.

5. Bialynicki-Birula, I., "Photon wave function," Progress in Optics, Vol. 36, 245-294, 1996.
doi:10.1016/S0079-6638(08)70316-0

6. Bialynicki-Birula, I., "The role of the Riemann-Silberstein vector in classical and quantum theories of electromagnetism," Journal of Physics A Mathematical and Theoretical, Vol. 46, No. 15, Nov. 2012.

7. Von Laue, M., Die RelativitÄatstheorie. Zweiter Band: Die Allgemeine RelativitÄatstheorie Und Einsteins Lehre Von Der Schwerkraft, Friedr. Vieweg & Sohn, 1921 and 1923.

8. Minkowski, H., "Die Grundgleichungen fur die elektromagnetischen Vorgange in bewegten Korpern," Nachrichten von der Gesellschaft der Wissenschaften zu GÄottingen, Mathematisch-Physikalische Klasse, 53-111, 1908.

9. Bateman, H., The Mathematical Analysis of Electrical and Optical Wave-motion, University Press, 1915.

10. Lewin, L., Theory of Waveguides, Butterworth and Co Ltd., 1975.

11. Rumsey, V. H., "A new way of solving Maxwell's equations," IRE Transactions on Antennas and Propagation, 461-465, Sep. 1961.
doi:10.1109/TAP.1961.1145047

12. Lakhtakia, A., "Time-dependent Beltrami fields in material continua: The Beltrami-Maxwell postulates," International Journal of Infrared and Millimeter Waves, Vol. 15, No. 2, 369-394, 1994.
doi:10.1007/BF02096247

13. Lakhtakia, A., Beltrami Fields in Chiral Media, World Scientific, 1994.
doi:10.1142/2031

14. Lakhtakia, A., "Vector spherical wavefunctions for orthorhombic dielectric-magnetic material with gyrotropic-like magnetoelectric properties," Journal of Optics, Vol. 41, No. 4, 201-213, Dec. 2012.
doi:10.1007/s12596-012-0084-y

15. Kogan, B. L., Electromagnetic waves of a circular polarization in antenna theory (In Russian), Doctor of technical science dissertation, Dept. of Antennas and Wave Propagation, Moscow Power Engineering Institute, Moscow, Russia, 2004.

16. Gelfand, I. M., R. A. Minlos, and Z. Y. Shapiro, Representations of the Rotation and Lorentz Group and Their Applications, Pergamon Press, 1963.

17. Vilenkin, N. Ya., Special Functions and the Theory of Group Representations (Translations of Mathematical Monographs), Vol. 22, Providence, 1968.

18. Varshalovich, D. A., A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific, 1988.
doi:10.1142/0270

19. Kogan, B. L., "About vector spherical harmonics of circular polarization (In Russian)," Antenny, No. 2, 59-63, 2004.

20. Kogan, B. L., "Application of Faraday's vectors in antenna theory," 1st Eur. Conf. Ant. and Propag. (EuCAP), Nice, France, Nov. 2006.