Vol. 49
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-08-10
Curved Space-Time for Light by an Anisotropic Medium: Media with the Variable Optical Axes
By
Progress In Electromagnetics Research M, Vol. 49, 117-129, 2016
Abstract
An optical impedance-matched medium with a gradient refractive index can resemble a geometrical analogy with an arbitrary curved space-time. In this paper, we show that a non-impedance-matched medium with a varying optical axis can also resemble the features of a space of non-trivial metric for light. The medium with a varying optical axis is an engineered stratified slab of material, in which the orientation of the optical axis in each layer slightly differs from the other layers, while the magnitude of refractive index remains constant. Instead of the change in refractive index, the inhomogeneity of such a medium is induced by the local anisotropy. Therefore, the propagation of light depends on the local optical axis. We study the conditions that make the analogy between curved space-time and a medium with a varying optical axis. Extension of the transformation optics to the media with optical axis profile might ease some fabrication difficulties of gradient refractive index materials for particular frequencies.
Citation
Sayed Alireza Mousavi, Rasoul Roknizadeh, Sahar Sahebdivan, and Shahram Dehdashti, "Curved Space-Time for Light by an Anisotropic Medium: Media with the Variable Optical Axes," Progress In Electromagnetics Research M, Vol. 49, 117-129, 2016.
doi:10.2528/PIERM16051309
References

1. Leonhardt, U. and T. G. Philbin, "General relativity in electrical engineering," New J. Phys., Vol. 8, No. 10, 247, 2006.
doi:10.1088/1367-2630/8/10/247

2. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

3. Thompson, R. T., S. A. Cummer, and J. Frauendiener, "A completely covariant approach to transformation optics," J. Opt., Vol. 13, No. 2, 024008, 2011.
doi:10.1088/2040-8978/13/2/024008

4. Leonhardt, U. and T. Philbin, Geometry and Light: The Science of Invisibility, Dover, New York, 2012.

5. McCall, M., "Transformation optics and cloaking," Contem. Phys., Vol. 54, No. 6, 273-286, 2013.
doi:10.1080/00107514.2013.847678

6. Sarkissian, H., S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, "Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals," Opt. Lett., Vol. 31, 2248-2250, 2006.
doi:10.1364/OL.31.002248

7. Nersisyan, S. R., N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, "Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching," Journal of Nonlinear Optical Physics and Materials, Vol. 18, No. 1, 1-47, 2009.
doi:10.1142/S0218863509004555

8. Liang, Z., X. Jiang, F. Miao, S. Guenneau, and J. Li, "Transformation media with variable optical axes," New J. of Phys., Vol. 14, No. 10, 103042, 2012.
doi:10.1088/1367-2630/14/10/103042

9. Sluijter, M., Ray-optics Analysis of Inhomogeneous Optically Anisotropic Media, Delft University of Technology, TU Delft, 2010.

10. Cai, W. and V. M. Shalaev, Optical Metamaterials, Springer, Berlin, Germany, 2010.
doi:10.1007/978-1-4419-1151-3

11. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, Cambridge University Press, London, 1999.
doi:10.1017/CBO9781139644181

12. Neves, N. M., A. S. Pouzada, J. H. D. Voerman, and P. C. Powell, "The use of birefringence for predicting the stiffness of injection molded polycarbonate discs," Polym. Eng. Sci., Vol. 38, No. 10, 1770-1777, 1998.
doi:10.1002/pen.10347

13. Saleh, B. E. A., M. C. Teich, and B. E. Saleh, Fundamentals of Photonics, Vol. 22, Wiley, New York, 1991.
doi:10.1002/0471213748

14. Yariv, A. and P. Yeh, Optical Waves in Crystals, Vol. 10, Wiley, New York, 1984.

15. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1962.

16. Hao, J. and L. Zhou, "Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4 × 4 transfer-matrix method," Phy. Rev. B, Vol. 77, No. 094201, 2008.

17. Yeh, P., "Optics of anisotropic layered media: A new 4×4 matrix algebra," Surf. Science, Vol. 96, No. 1, 41-53, 1980.
doi:10.1016/0039-6028(80)90293-9