
Progress In Electromagnetics Research M, Vol. 49, 117–129, 2016

Curved Space-Time for Light by an Anisotropic Medium:
Media with the Variable Optical Axes
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Abstract—An optical impedance-matched medium with a gradient refractive index can resemble a
geometrical analogy with an arbitrary curved space-time. In this paper, we show that a non-impedance-
matched medium with a varying optical axis can also resemble the features of a space of non-trivial
metric for the light. The medium with a varying optical axis is an engineered stratified slab of material,
in which the orientation of the optical axis in each layer slightly differs from the other layers, while
the magnitude of refractive index remains constant. Instead of the change in refractive index, the
inhomogeneity of such a medium is induced by the local anisotropy. Therefore, the propagation of light
depends on the local optical axis. We study the conditions that make the analogy between curved space-
time and a medium with a varying optical axis. Extension of the transformation optics to the media
with optical axis profile might ease some fabrication difficulties of materials with gradient refractive
index.

1. INTRODUCTION

Transformation optics [1–4] works based on the diffeomorphic map between a virtual space and physical
space. For the sake of simplicity, in most of the applications, physical space is constructed from an
isotropic medium with a refractive index profile varying in position, while the optical axis remains
fixed. This simplification restricts the underlying diffeomorphic map to the family of quasi-conformal
maps [5]. However, inspired by optical axes grating in liquid crystals [6, 7], one can show [8] that the
diffeomorphic map between the virtual space and physical space might extend to the family of the
area-preserving maps by sequentially manipulating the direction of optical axes instead of gradually
changing the amplitude of refractive index.

In theory, an array of homogeneous anisotropic thin layers, where in each of the layers the direction
of the principal axes is controllable, can form an inhomogeneous medium with optical axes profile. The
inhomogeneity is induced by the local anisotropy and gradual change in the direction of the optical
axes over space. The global inhomogeneity is responsible for curving the light trajectories. This kind of
medium can be realized, for example, by applying the external field or internally charged particles on
the designed arrays of liquid crystals [9] or by other techniques that combine the arrays of homogeneous
anisotropic layers. Such materials show the capacity of being used in transformation optics designs
when impedance-matched materials are costly. Unlike most of the artificial metamaterials that are
constructed from two kinds of meta-atom, the medium with variable optical axis [8] can be fabricated
from one kind of homogeneous anisotropic material.
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From the practical perspective, unlike the impedance-matched media, anisotropic materials [10]
are accessible in nature and even much cheaper to design artificially. Birefringent crystals [11] are the
best-known materials that perform electrical anisotropy based on their particular crystal structure and
the symmetry of their space-group. Many plastics are also anisotropic [12], because their molecules are
‘frozen’ in a stretched conformation when the plastic is molded or extruded.

In this research, considering a medium with variable optical axis [8], we construct an optical metric
in the plane of propagation, for extraordinary rays. Therefore, a medium with the variable optical axis
can be considered as a curved space-time for extraordinary light rays. In the final part of the paper,
we study the anisotropic, impedance-matched medium. We show in details, instead of demanding the
impedance-matched condition, for some applications, that it is enough to restrict the concern only to
the electrical response of the material and utilize the optical properties of an anisotropic birefringent
medium.

The paper is structured as follows. In Section 2, we briefly summarize the method applied. In
Section 3, we explain in detail a technique, called “eigenvalue wave equation method” to solve the
Maxwell equations in the anisotropic medium. In Section 4, we apply the method to study the behavior
of light in a normal incident on the single anisotropic slab. In Section 5, we derive the light trajectory for
two examples where the array of the non-magnetic slabs forms a variable optical axes media. Further,
we construct the optical metric for such media and discuss the corresponding curvature in the optical
plane for ray trajectories. Additionally, we have studied the functionality of the birefringent medium
in transformation optics.
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Figure 1. Schematic of anisotropic slabs with ¯̄ε and ¯̄μ as a tensor, light incidents from left and incident
plane is y-z plane; two principal axes of each slab, z′ and y′, do not lay on the z and y coordinate. Red
dashed lines indicate third principal axis of the medium; The orientation of the principal axis changes
in each slab.

2. METHOD

The aim of this paper is to derive the effective optical metric for a stratified medium in which the
anisotropy and homogeneity are only local. The medium as a whole is inhomogeneous. We consider the
medium consisting of many thin slabs. Each slab assumes to be anisotropic and homogeneous. We will
derive the solutions of the wave equation in any single anisotropic layer with an arbitrary direction of the
principle axes. Having the wave solutions for each slab, we can calculate the ray path and consequently,
achieve the ray trajectory in the system. According to the Fermat principle, light in a medium follows
the geodesics. By studying the properties of the light geodesics in the medium, we can associate a
geometry to the medium. Particularly, it is possible to study the curvature of the effective metric.

3. LIGHT IN ANISOTROPIC MEDIA

In mathematical term, the electric permittivity and magnetic permeability of anisotropic materials are
described by a tensorial quantity. For most of the anisotropic media, there are two different refractive
indices associated with two normal modes. One of these refractive indices, called extraordinary, depends
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on the orientation of the principle axes [13, 14]. Therefore, it is convenient to start studying the
propagation of light in an anisotropic slab.

Maxwell equations in an inhomogeneous anisotropic source-free materials, ρ = 0, J = 0, are given
by [15]:

∇ ·D = 0, ∇ ·B = 0, ∇× E = −∂B

∂t
, ∇×H =

∂D

∂t
. (1)

The constitutive relations are hold as:

D = ε0 ¯̄εE, B = μ0 ¯̄μH, (2)

where ¯̄ε and ¯̄μ are respectively the electric permittivity and magnetic permeability tensors for an
arbitrary optical axis.

Explicitly assuming electric and magnetic anisotropy, wave equation can be written as

∇× ¯̄μ−1(∇× E) = −μ0
∂2

∂t2
D. (3)

In a homogeneous anisotropic medium, the plane waves, E ∝ exp[ik ·r− iωt], is usually assumed as
the general solution of the Maxwell wave equation [16]. Using this assumption, Equation (3) becomes:

k × ¯̄ξ(k × E) = −k20 ¯̄εE, (4)

where ¯̄ξ = ¯̄μ−1. We rewrite Equation (4) in a matrix equation form,

ME = −k20 ¯̄εE,

in which the matrix elements of M are obtained as

Mii = 2ξjkkjkk − (ξkkk
2
j + ξjjk

2
k),

Mij = ξijk
2
k − (ξkikj + ξkjki) kk + ξkkkjki,

(5)

where {i �= j �= k} = {1, 2, 3}.
In an anisotropic material, the electric and magnetic components of the field are not necessarily

perpendicular to the wave vector. The direction of E and H-fields can vary as light propagates through
the medium. However, electric and magnetic inductions are always perpendicular to the wave vector
according to the relations, ∇ ·D = 0 and ∇ ·B = 0. So, it is useful to write the eigenvalue equation in
term of D [13]. By defining the phase refractive index as a ratio between wave number in medium and

in vacuum, n = k/k0 and substituting k = nk0Û in Equation (4), we get eigenvalue equation,

Û × ¯̄ξ(Û × ¯̄ηD) = − 1

n2
D, (6)

where Û = k/k is a direction of the wave vector and ¯̄η = ¯̄ε−1. Accordingly, we find two directions for
D corresponding to the wave vector. Equation (6) can be written in the operator form,

LD = − 1

n2
D. (7)

In a general coordinate, matrix L might have a complicated form. Nevertheless, knowing that the
light propagates in a plane, we can establish a fixed coordinate system such that the propagation plane
coincides with one of the principal planes of the coordinate system. As shown in Fig. 1, we choose
y-z as the propagation plane, so that the x component of the wave vector vanishes. Thus, matrix L is
simplified to the following non-zero components:

L1i = (ξ31η3i − ξ33η1i)u
2
2 + (−ξ22η1i + ξ21η2i)u

2
3 + (2ξ23η1i − ξ31η2i − ξ21η3i)u2u3, (8)

L2i = (ξ12η1i − ξ11η2i)u
2
3 + (−ξ13η1i + ξ11η3i)u2u3, (9)

L3i = (ξ13η1i − ξ11η3i)u
2
2 + (−ξ12η1i + ξ11η2i)u2u3, (10)

where i = 1, 2, 3.
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One can obtain electrical displacement D by solving Equation (7) through the matrix algebra:

det(L+
1

n2
I) = 0. (11)

Having the components of D, other fields and Poynting vector can be calculated easily [15]

E =
¯̄η

ε0
D, B = n

√
μ0ε0Û × E, H =

¯̄ξ

μ0
B, S = E ×H, (12)

where, we have assumed that fields B,H are harmonic in time; ∝ exp[ik · r− iωt]. Finally, the direction
of the field propagation for each mode is determined from the Poynting vector as:

dr

dl
=

S

S
. (13)

4. NORMAL INCIDENT OF LIGHT ON A PIECE OF ELECTROMAGNETIC SLAB

In this section, we study the behavior of light which strikes perpendicularly on a single anisotropic
slab of material, shown in Fig. 1. Our analysis is extendable to an arbitrary angle of incidence. We
consider the y-z plane as the propagation plane, where the light travels parallel to the z axis. In the
normal incidence, the wave vector has no any projection on the boundary; ky = 0. The phase matching
condition on the boundaries requires that ky vanishes inside the medium. In general, in the normal
incidence, the direction of the wave vector does not change.

|k| = kz. (14)

Now we want to achieve the normal modes for this direction of the wave vector. We assume that two
principal axes y′ and z′ of the slab lay in the y-z plane, shown in Fig. 1. In this case, the dielectric
tensor can be obtained from following relation [17],

¯̄ε = A¯̄ε′AT , (15)

where ¯̄ε′ = diag(ε1, ε2, ε3) is the principle permittivity tensor, and A is the rotation matrix, which
describes the rotation of the coordinate axes with respect to the crystal principal axes.

Suppose that two principal axes y′ and z′ of the slab lay in this plane, shown in Fig. 1, then the
rotation matrix is given by

A = Rx(θ) =

⎛
⎝ 1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎞
⎠ , (16)

where θ is an angle between z and z′. From Equation (15), we can obtain the rotated permittivity
tensor,

¯̄ε =

⎛
⎝ ε1 0 0

0 ε2 cos
2 θ + ε3 sin

2 θ −(ε2 − ε3) sin θ cos θ

0 −(ε2 − ε3) sin θ cos θ ε2 sin
2 θ + ε3 cos

2 θ

⎞
⎠ . (17)

and also the inverse permittivity tensor,

¯̄η =
1

ε2ε3

⎛
⎜⎜⎝

ε2ε3
ε1

0 0

0 ε2 sin
2 θ + ε3 cos

2 θ (ε2 − ε3) sin θ cos θ

0 (ε2 − ε3) sin θ cos θ ε2 cos
2 θ + ε3 sin

2 θ

⎞
⎟⎟⎠ . (18)

From Maxwell equations we have ∇ · D = 0, hence, for the normal incidence it reads as Dz = 0.
For other components of D by replacing relation (18) in Equation (6), we will have:( −η11ξ22 ξ21η22

η11ξ12 −ξ11η22

)(
Dx

Dy

)
= − 1

n2

(
Dx

Dy

)
. (19)
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By applying the condition in Equation (11), the eigenvalues of Equation (19) are obtained from
the following equation: (

1

n2
− η11ξ22

)(
1

n2
− ξ11η22

)
− ξ221η22η11 = 0. (20)

This is a quadratic equation in terms of 1/n2 which has two eigenvalues;

1

n2
=

⎧⎪⎪⎨
⎪⎪⎩

1

2

(
η11ξ22 + ξ11η22 +

√
(η11ξ22 − ξ11η22)

2 + 4ξ221η11η22

)
1

2

(
η11ξ22 + ξ11η22 −

√
(η11ξ22 − ξ11η22)

2 + 4ξ221η11η22

) (21)

Corresponding eigenvectors will determine the physical components of the field.
In the next part, we investigate two special examples: a layer of a non-magnetic medium, with

¯̄μ = 1, and a slab of impedance-matched material, with ¯̄μ = ¯̄ε.

4.1. Non-Magnetic Anisotropic Medium

For the purely electric medium, the refractive indices in Equation (21) are given by

n2
o = ε1, (22)

n2
e(θ) =

ε2ε3

ε2 sin
2 θ + ε3 cos2 θ

. (23)

Relation (23) shows that the refractive index depends on principal values of the permittivity tensor, i.e.,
ε2 and ε3, and, θ, the angle between the direction of the wave vector and third principle axis. Whereas
the refractive index in Equation (22) depends only on ε1.

For a specific angle of incidence, in this example perpendicular incidence, there are two modes
associated with the above refractive indices profiles. For refractive index in Equation (22), we can
obtain D by solving the eigenvalue equation (19):

D = Dx(1 0 0)T , (24)

and for the refractive index in Equation (23) we have:

D = Dy(0 1 0)T . (25)

By applying the normalization condition, E ·E = 1, we can determine components Dx and Dy. For the
first normal mode in Equation (24), electric and magnetic fields are written in the from of Equation (12),

E =

⎛
⎝ 1

0

0

⎞
⎠ , H =

(
ε0
μ0

) 1
2

(ε1)
1
2

⎛
⎝ 0

1

0

⎞
⎠ . (26)

As the electrical field of this particular mode is perpendicular to the propagation plane, we can
conclude that this normal mode is a TE polarized component of the field. For second normal mode in
Equation (25), E and H are given by,

E =
(
ε22 sin

2 θ + ε23 cos
2 θ
)− 1

2

⎛
⎝ 0

ε2 sin
2 θ + ε3 cos

2 θ
(ε2 − ε3) sin θ cos θ

⎞
⎠ , (27)

H =

(
ε0
μ0

)1
2

(
ε2ε3

(
ε2 sin

2 θ + ε3 cos
2 θ
)

ε22 sin
2 θ + ε23 cos

2 θ

) 1
2

⎛
⎝ −1

0

0

⎞
⎠ . (28)

with a similar argument, when the electrical field of the mode lies in the propagating plane y-z, the
mode is the TM-polarized component. On the other hand, the TE-polarized fields propagate along the
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electric flux density, but modes with TM polarization do not. The Poynting vectors of TE and TM
polarizations can derive as

STE =

(
ε0
μ0

) 1
2

(ε1)
1
2

⎛
⎝ 0

0

1

⎞
⎠ , (29)

STM =

(
ε0
μ0

) 1
2 (ε2ε3)

1
2 (ε2 sin

2 θ + ε3 cos
2 θ)

1
2

ε22 sin
2 θ + ε23 cos

2 θ

⎛
⎝ 0

−(ε2 − ε3) sin θ cos θ

ε2 sin
2 θ + ε3 cos

2 θ

⎞
⎠ . (30)

The ray direction is given by the angle of the ray with respect to the z-axis, determined by the
relations (29), (30) and (13). For the TE mode, we can write:

tanφ =
Sy

Sz
= 0,

dr

dl
=

(
0
0
1

)
. (31)

For the TM mode, we achieve:

tan φ =
−(ε2 − ε3) sin θ cos θ

ε2 sin
2 θ + ε3 cos2 θ

, (32)

dr

dl
=

1√
ε22 sin

2 θ + ε23 cos
2 θ

⎛
⎝ 0

−(ε2 − ε3) sin θ cos θ

ε2 sin
2 θ + ε3 cos

2 θ

⎞
⎠ . (33)

Since the wave vector is along the z-axis, φ is equivalent to the deviation angle of the light from the
wave vector direction. In relation (32), the propagation direction of TM polarization is not identical to
the wave vector. Therefore, it represents extraordinary ray, whereas the ray direction of TE polarization
is along the wave vector, and therefore, it is the ordinary ray.

5. MEDIUM WITH VARIABLE OPTICAL AXES

In this section, we investigate the space-time metric in a designed medium [8], in which the orientation
of the principal axis changes in position. For simplicity, we consider the case where the variation of the
direction depends only on the z parameter: θ = θ(z). In such a medium inhomogeneity is induced by
the variation of θ(z). Equivalently, we can assume the medium as thin stratified layers of homogeneous,
anisotropic slabs in the z direction, shown in Fig. 1. The direction of the principle axis in each slab
is constant, but the overall orientation of the principle axis in the whole medium is a function of z.
Each layer in the y-z plane is a rectangle, shown in Fig. 1. Therefore, in the normal incident on the
boundary, k = kz ẑ, we have ky = 0. As seen in the previous sections, the phase matching condition
on each boundary guarantees that the direction of the wave vector through each layer does not change,
and the wave vector is along the z direction.

The ray direction in each layer follows relation (32). Consequently, we can easily trace the light
trajectory in this layered medium.

5.1. Ray Tracing

We apply the ray-tracing method to trace the light geodesics in two examples of layered media with
variable optical axes: First, a layered medium in which the orientation of optical axis varies with z as
θ = z, and the second one where the dependency of the optical axis to z direction follows the relation:
θ =

√
z. Also, we assume that the principal values of permittivity are equal to ε2 = 2.75 and ε3 = 2.21,

which are associated to the calcite crystal principal permittivities [14].
According to relation (32), we can trace the extraordinary ray in layered anisotropic media by

solving the following equation:

dy =
−(ε2 − ε3) sin θ(z) cos θ(z)

ε2 sin
2 θ(z) + ε3 cos2 θ(z)

dz (34)
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(a) (b)

Figure 2. Ray tracing in anisotropic media with variable optical axes, (a) θ = z and (b) θ =
√
z, the

green arrows indicate orientations of the third principle axis and the red lines indicate ray trajectories
in the media.

In Fig. 2, the plotted trajectories of the family of extraordinary rays are shown. Left and right
diagrams are corresponding to the θ = z and θ =

√
z, respectively, which indicate the normal incidence

of light.
As we can see in Fig. 2, the light geodesics through these media are not straight lines, and moreover,

it seems that these surfaces are under tension. Therefore, we expect a non-zero Riemannian tensor for
the corresponding metric.

5.2. Metric

We can construct the space-time metric of the two dimensional distorted surfaces, as shown in Fig. 2.
The first step to construct the metric is to choose three bases:

e0 = g
1/2
00

(
1
0
0

)
, e1 =

(
0
1
0

)
, e2 =

(
0
0
1

)
, (35)

where coefficient g00 is a scalar function which provides sufficient condition for null geodesics ds2 = 0.
Using the bases in Equation (35), we can derive the metric components [4],

gμν = eμ · eν . (36)

The space-time metric in the matrix form becomes,

¯̄g =

(
g00 0 0
0 1 0
0 0 1

)
(37)

or equivalently in the form of the Riemann line element,

ds2 = g00c
2dt2 + dy2 + dz2 (38)

The null geodesics condition, ds2 = 0, requires that,

dy2 + dz2 + g00c
2dt2 = 0. (39)

Therefore, the time component of the metric becomes:

g00 = − dl2

c2dt2
(40)
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where dl2 = dy2 + dz2. On the other hand, for the light fields, the surfaces of the equal phases are
defined as the solutions of following equation:

dϕ(r, t) = 0. (41)

The condition in Equation (41) results in:

k · dr − ωdt = 0. (42)

or equally:
cdt = nÛ · dr. (43)

From Equation (32) we have

cdt = n
ε2 sin

2 θ + ε3 cos
2 θ√

ε22 sin
2 θ + ε23 cos

2 θ
dl. (44)

Substituting Equation (44) in relation (40), coefficient g00 is easily determined,

g00 = − ε22 sin
2 θ + ε23 cos

2 θ

n2
(
ε2 sin

2 θ + ε3 cos2 θ
)2 , (45)

and by using these results in Equation (38) the line element of the propagation plane can be written as

ds2 = −
(

ε22 sin
2 θ + ε23 cos

2 θ

n2
(
ε2 sin

2 θ + ε3 cos2 θ
)2
)
c2dt2 + dx2 + dy2. (46)

Using the refractive index in Equation (23), achieved in the previous section, we can construct the
following optical metric for the extraordinary ray:

ds2 = −
(

ε22 sin
2 θ + ε23 cos

2 θ

ε2ε3
(
ε2 sin

2 θ + ε3 cos2 θ
)
)
c2dt2 + dy2 + dz2. (47)

Relation (47) explicitly shows that the time component does not vanishes, g00 �= 0. Indeed, we can
rewrite g00 as

g00 = − 1

n2
e cos

2 φ
, (48)

where φ is the deviation angle given by Equation (32). In anisotropic media, usually the deviation angle
is small. So, it seems that to create the analogue event horizon with variable optical axes media such as
Fig. 1 is hard. However, these media can be useful to bending light in the partially invisibility devices.

5.3. Deviation Angle

By using relation (32), we can calculate the maximum possible deviation angle for the extraordinary
ray:

φmax = arctan

(
ε2 − ε3
2
√
ε2ε3

)
, (49)

The maximum deviation occurs when the relative angle θ became:

θ = arctan

(√
ε3
ε2

)
. (50)

We can rewrite relation (49) as:

φmax = arctan

[
1

2

(
n2

n3
− n3

n2

)]
. (51)

For natural anisotropic media, the maximum deviation angle is small. For example, in Calcite
φmax is almost 6◦. However, this deviation angle could be greater in anisotropic metamaterials. In
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an artificial anisotropic slab, made of isotropic thin layers with ε′ and ε, the principle values of the
permittivity tensor are given by [10]:

ε‖ = f ′ε′ + fε, (52)

ε⊥ =
ε′ε

fε′ + f ′ε
, (53)

where f ′ + f = 1. For the cases that f ′ = f = 1
2 , we can obtain maximum deviation angle for the

extraordinary rays as:
ε′ − ε

4
√
ε′ε(ε′ + ε)

. (54)

In artificial material, φmax is larger than natural anisotropic media, but, still, it is a small amount. In
the hyperbolic metamaterial in which one of the ε′ or ε is negative, φmax reaches large values.

5.4. Ray Refractive Index

A careful look on relation (47) reveals the conformally flat nature of the two-dimensional space, which
associates with the spatial part of the metric

ds2 = −c2dt2 + n

(
ε2 sin

2 θ + ε3 cos
2 θ
)2

ε22 sin
2 θ + ε23 cos

2 θ
dl2. (55)

with the following refractive index:

nray(θ) =
ε2ε3

(
ε2 sin

2 θ + ε3 cos
2 θ
)(

ε22 sin
2 θ + ε23 cos

2 θ
) , (56)

= n2
e(θ) cos

2 φ. (57)

Index nray is the effective refractive indices perceived by the light rays, called ray refractive index
while the extraordinary refractive index ne is phase refractive index.

In Fig. 3, we plot the ray refractive index nray and phase refractive index ne, respectively, versus
the position for two cases: first when θ = z and second when θ =

√
z. As shown in Fig. 3, the proximity

of the two curves confirms the results of the previous subsection: the deviation angle φ is small. The
curves show that these refractive indices can take the values between

√
ε2 and

√
ε3. Although this

range is limited in the natural anisotropic crystals, it can get larger in the anisotropic metamaterials.
Moreover, the graphs show how the medium appears for light as gradient index media.

(a) (b)

Figure 3. Variation of the ray refractive index and phase refractive index as a function of position, (a)
θ = z and (b) θ =

√
z, the blue line indicate ray refractive index, nray and the red dashed lines indicate

to phase refractive index, ne.
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5.5. Curvature

The line element in Equation (47) indicates that the propagation plane is a conformally flat space with
(possibly) non-zero curvature. We can investigate the curvature by using the differential geometry
relations.

Riemann curvature tensor is given by [4]

Ri
jkl ≡ Γi

jl,k − Γi
jk,l + Γi

mkΓ
m
jl − Γi

mlΓ
m
jk, (58)

where Γi
jk is the Christoffel symbol, and the comma notation “,” refers to partial differentiation. The

Christoffel symbol can be expressed in terms of metric components as,

Γi
jk =

1

2
gil(glj,k + glk,j − gjk,l). (59)

For the metric in Equation (47), which is a two-dimensional conformally flat space, gij = n2δij , we
can obtain Christoffel symbol from relation,

Γi
ij =

1

2n2
n2
,j. (60)

Using relation (60), Riemann curvature tensor, Equation (58) is achieved as:

R11 = R22 =
1

2n4

{(
∂

∂z
n2

)2

+

(
∂

∂y
n2

)2
}

− 1

2n2

{(
∂

∂z

∂

∂z
n2

)
+

(
∂

∂y

∂

∂y
n2

)}
. (61)

We calculate this tensor for the above mentioned example of the medium with variable axes, θ = z.
Consequently, we find that the curvature is non-zero,

Rii �= 0. (62)

The media with θ = f(z) have a non-zero Riemann curvature tensor and appear as a curved space for
the extraordinary light. Therefore, it is possible to use the variable optical axes media for realizing the
curved space-time in the laboratory.

6. IMPEDANCE-MATCHED ANISOTROPIC MEDIUM

In this section, by using the relations achieved in Section 4, we investigate the behavior of the normal
incident light on the impedance-matched anisotropic slab, μij = εij and then compare its results with
the case of the non-magnetic medium. For the impedance-matched, anisotropic medium, μij = εij , two
refractive indices in Equation (21) are reduced to one relation,

n2
imp(θ) =

ε1ε2ε3

ε2 sin
2 θ + ε3 cos2 θ

. (63)

Therefore, like the birefringent media, for the impedance-matched medium we have one eigenvalue, i.e.,
the impedance-matched media do not birefringence. For more investigation we compare this medium
with the results achieved in the case of non-magnetic medium in previous subsection. By comparing
the refractive indices in Equation (63) with Equation (23), we find that,

nimp(θ) =
√
ε1ne(θ), (64)

where index e (imp) stands for extra ordinary (impedance-matched). ε1 govern the electrical responses
of the ordinary mode in birefringent medium,

n2
imp(θ) = n2

on
2
e(θ). (65)

Also, we investigate the behavior of the birefringent medium normal mode, TE and TM
polarizations, in the impedance-matched medium. Following Equation (12), for the TM mode, the
electric and magnetic fields are given by,

E =
(
ε22 sin

2 θ + ε23 cos
2 θ
)− 1

2

⎛
⎝ 0

ε2 sin
2 θ + ε3 cos

2 θ
(ε2 − ε3) sin θ cos θ

⎞
⎠ , (66)

H =

(
ε0
μ0

)1
2 (ε1ε2ε3)

1
2 (ε2 sin

2 θ + ε3 cos
2 θ)

1
2

(ε22 sin
2 θ + ε23 cos

2 θ)
1
2

( −1
0
0

)
. (67)
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On the other hand, for the TE polarization, the electric and magnetic fields become,

E = ( 1 0 0 )
T
, (68)

H =

(
ε0
μ0

) 1
2 (ε1ε2ε3)

1
2

(ε2 sin
2 θ + ε3 cos2 θ)

1
2

1

ε2ε3

⎛
⎝ 0

ε2 sin
2 θ + ε3 cos

2 θ
(ε2 − ε3) sin θ cos θ

⎞
⎠ . (69)

Expressions (68) and (69) show that for the TE mode, the electric field E and displacement field
D are in the same direction. On the other hand, the magnetic field H is not along the induction B,
and vice versa in the case of TM mode. From relation (13), we obtain the Poynting vector for the TM
and TE modes in impedance-matched medium

STM =

(
ε0
μ0

) 1
2 (ε1ε2ε3)

1
2 (ε2 sin

2 θ + ε3 cos
2 θ)

1
2

ε22 sin
2 θ + ε23 cos

2 θ

⎛
⎝ 0

−(ε2 − ε3) sin θ cos θ
ε2 sin

2 θ + ε3 cos
2 θ

⎞
⎠ , (70)

STE =

(
ε0
μ0

) 1
2 (ε1ε2ε3)

1
2

(ε2 sin
2 θ + ε3 cos2 θ)

1
2

1

ε2ε3

⎛
⎝ 0

−(ε2 − ε3) sin θ cos θ
ε2 sin

2 θ + ε3 cos
2 θ

⎞
⎠ . (71)

It is clear that TE and TM modes have the same Poynting vector. Consequently, light in impedance-
matched media is not divided into ordinary and extraordinary rays as expected. The angle between ray
and z-axis can be written as,

tanφ(TE) = tanφ(TM) =
−(ε2 − ε3) sin θ cos θ

ε2 sin
2 θ + ε3 cos2 θ

. (72)

Also, we can write the ray direction in the impedance-matched slab as

dr

dl
=

1√
ε22 sin

2 θ + ε23 cos
2 θ

⎛
⎝ 0

−(ε2 − ε3) sin θ cos θ
ε2 sin

2 θ + ε3 cos
2 θ

⎞
⎠ . (73)

Relation (73) shows important fact about the impedance-matched media: In these media although the
birefringent effect does not occur, the ray direction in this medium is of extraordinary ray. The ray
direction in this medium does not necessarily go along the wave vector.

Comparison between Equations (32) and (73) shows(
dr

dl

)TM

el

=

(
dr

dl

)
imp

, (74)

i.e., the direction of the rays in impedance-matched media is the same as the direction of extraordinary
rays in non-magnetic anisotropic media.

6.1. Ray Tracing and Metric

Figure 2 (drawn according to relation (74)) shows the ray trajectory in the impedance-matched,
inhomogeneous medium with θ = z and θ =

√
z, while the corresponding effective metric of the

propagation plane can be achieved from relation (46),

ds2 = −c2dt2 + n

(
ε2 sin

2 θ + ε3 cos
2 θ
)2

ε22 sin
2 θ + ε23 cos

2 θ
dl2. (75)

The impedance matched-media appear as following metric for the light ray:

ds2 = −c2dt2 +
ε1ε2ε3

(
ε2 sin

2 θ + ε3 cos
2
)(

ε22 sin
2 θ + ε23 cos

2
) (dy2 + dz2). (76)

On the other hand, the spatial metric felt by light in an impedance-matched medium given by [4]

¯̄g = (det ¯̄ε)¯̄ε−1. (77)
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This spatial metric in our example, Fig. 1, takes the following form:

¯̄gimp(y − z) =

(
ε1(ε2 sin

2 θ + ε3 cos
2 θ) ε1(ε2 − ε3) sin θ cos θ

ε1(ε2 − ε3) sin θ cos θ ε1(ε2 cos
2 θ + ε3 sin

2 θ)

)
. (78)

At the first glance, the metric in Equation (78) looks different from our constructed metric in
Equation (76), but by using the following relation:

ε2ε3 = (ε2 cos
2 θ + ε3 sin

2 θ)(ε2 sin
2 θ + ε3 cos

2 θ)− [(ε2 − ε3) sin θ cos θ]
2 , (79)

we show that the two metrics in Equations (76) and (78) are equivalent. This equivalence can be
considered as a verification of our method.

6.2. Comparing between the Metrics

In this part, we discuss how transformation optics will be applied to the non-impedance-matched
media. Remember from Section 4, the direction of the extraordinary ray in non-magnetic medium
in Equation (32) coincides with direction of the ray in corresponding impedance-matched version in
Equation (73). Relation (64) shows that the two refractive indices are conformally equal. Therefore,
we expect a similarity in their optical path length if ε1 = constant.

Mathematically, we consider the metrics in Equations (76) and (47). Using null geodesics condition,
we can write the following metric, Equation (80) as a conformal equivalent of the metric in Equation (47),

ds2e = −ε1c
2dt2 +

ε1ε2ε3
(
ε2 sin

2 θ + ε3 cos
2
)(

ε22 sin
2 θ + ε23 cos

2
) dl2. (80)

Now, the spatial part of this metric in Equation (80), is the same as the spatial part of the metric in
Equation (76),

ds2imp = −c2dt2 +
ε1ε2ε3

(
ε2 sin

2 θ + ε3 cos
2
)(

ε22 sin
2 θ + ε23 cos

2
) dl2. (81)

Therefore, if ε1 = constant, two metrics are conformally equivalent. A non-magnetic anisotropic
medium, which is not impedance-matched, appears for the TM polarized light (extraordinary light),
as the impedance-matched medium for the non-polarized light. It is shown that we can write this
equivalence between these metrics as the following general relation:

¯̄ge(2 + 1) =

( −ε1 0
0 ¯̄gimp(y − z)

)
. (82)

As a result, for suitably polarized light, we can use non-magnetic medium instead of impedance-matched
one to make a desired metric. More elaborated theory using non-impedance-matched media as an
alternative to impedance-matched media will be discussed in the further publications.

7. CONCLUSION

We have studied the propagation of normal incident light in two kinds of medium with a similar
anisotropy in their refractive index profiles: One fulfils the impedance-matched condition, and the
other has only electrical anisotropy. Although in the impedance-matched media the birefringent
effect does not occur, the ray of light coincides in the trajectory with the extraordinary ray in a
corresponding birefringent medium, the impedance-matching condition eliminates the ordinary ray.
Second, we conclude that this extraordinary direction in the impedance-matched medium coincides
with the direction of the extraordinary rays in the non-magnetic medium when both have the same
anisotropy in their refractive index. A non-magnetic anisotropic medium, which is not impedance-
matched, appears for the TM polarized light (extraordinary light), as the impedance-matched medium
for the non-polarized light. As a result, for suitably polarized light, we can use non-magnetic medium
instead of impedance-matched one to make a desired metric.

By using the optical fact that the direction of wave propagation depends on the orientation of
the optical axis, we have studied the behaviour of light in an optical medium, in which the optical
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axis is controllable at each point. Medium with varying optical axis is an engineered inhomogeneous
material, e.g., a stratified medium, formed from arrays of thin homogeneous layers. By controlling the
direction of optical axis in each layer, the propagation of electromagnetic waves is controlled through the
medium. We have shown that this uncommon form of inhomogeneity would also result in the emergence
of effective geometry in the medium. The array of homogeneous, anisotropic slabs can appear for the
light as a curved space-time. We indicate the advantage of the variable optical axis medium as an
alternative to gradient refractive index medium.
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