Vol. 68
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-05-31
Diffraction of Axially-Symmetric TM-Wave from BI-Cone Formed by Finite and Semi-Infinite Shoulders
By
Progress In Electromagnetics Research B, Vol. 68, 73-88, 2016
Abstract
The problem of axially-symmetric TM-wave diffraction from a perfectly conducting bi-cone is analyzed. Bi-cone is formed by finite and semi-infinite conical shoulders and illuminated by ring magnetic source. The problem is formulated in a spherical coordinate system as a mixed boundary problem for Helmholtz equation. The unknown Hφ-diffracted field is sought as expansion in series of eigenfunctions for each region, formed by the bi-cone. The solution of the problem then is reduced to the infinite set of linear algebraic equations (ISLAE) of the first kind by means of mode matching technique and orthogonality properties of the eigen functions. The main parts of the asymptotic expressions of ISLAE matrix elements, determined for large indexes, identify the convolution type operator. The corresponding inversed operator is represented in an explicit form. Two of these operators are applied to reduce the problem to the ISLAE of the second kind and to determine the new analytical regularization method for the solution of wave diffraction problems for bi-conical scatterers. The unknown expansion coefficients can be determined from the ISLAE with the given accuracy by the reduction method. The particular cases such as low frequency approximation and transition from bi-cone to conical monopole and disc-cone scatterer are analyzed. The numerically obtained results are applied to the analysis of scattering properties of hollow conical monopoles and disc-conical scatterers.
Citation
Dozyslav B. Kuryliak, and Oleksiy M. Sharabura, "Diffraction of Axially-Symmetric TM-Wave from BI-Cone Formed by Finite and Semi-Infinite Shoulders," Progress In Electromagnetics Research B, Vol. 68, 73-88, 2016.
doi:10.2528/PIERB16041302
References

1. Rostomyan, N., A. T. Ott, M. D. Blech, R. Brem, C. J. Eisner, and T. F. Eibert, "Balanced impulse radiating omnidirectional ultrawideband stacked biconical antenna," IEEE Trans. on Antennas and Propagation, Vol. 63, No. 1, 59-68, 2015.
doi:10.1109/TAP.2014.2368574

2. Khorshidi, M. and E. Tahanian, "A new conical band-reject UWB antenna with uniform rejection and stable omnidirectional behavior," Progress In Electromagnetics Research C, Vol. 59, 31-40, 2015.
doi:10.2528/PIERC15071102

3. Gilbert, A. M. and L. Ryan, Ultra-wideband biconical antenna with excellent gain and impedance matching, US Pattent 20150280317 A1, Oct. 1, 2015.

4. Palud, S., F. Colombel, M. Himdi, and C. L. Meins, "A novel broadband eighth-wave conical antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 7, 2112-2116, Jul. 2008.
doi:10.1109/TAP.2008.924775

5. Amert, A. K. and K. W. Whites, "Miniaturization of the biconical antenna for ultrawideband applications," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 12, 3728-3735, Dec. 2009.
doi:10.1109/TAP.2009.2026667

6. Kudpik, R., N. Siripon, K. Meksamoot, and S. Kosulvit, "Design of a compact biconical antenna for UWB applications," Proc. International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), 1-6, Chiang Mai, Thailand, Dec. 7-9, 2011.

7. Yeoh, W. S. and W. S. T. Rowe, "An UWB conical monopole for multi-service wireless application," Antennas and Wireless Propagation Letters, Vol. 14, 1085-1088, 2015.
doi:10.1109/LAWP.2015.2394295

8. Lodge, O. J., Electric telegraphy, US Pattent 609,154, Aug. 16, 1898.

9. Carter, P. S., Wide band, short wave antenna and transmission line system, US Pattent 2,181,870, Oct. 10, 1939.

10. Barrow, W. L., Biconical electromagnetic horn, US Pattent 2,602,894. Jul. 8, 1952.

11. Schelkunoff, S. A., "Theory of antennas of arbitrary size and shape," Proc. IRE, Vol. 29, No. 9, 493-521, 1941.
doi:10.1109/JRPROC.1941.231669

12. Schelkunoff, S. A., "Principal and complementary waves in antennas," Proc. IRE, Vol. 34, 23-32, 1946.
doi:10.1109/JRPROC.1946.231574

13. Schelkunoff, S. A., "General theory of symmetric biconical antennas," J. Appl. Phys., Vol. 22, No. 11, 1330-1332, 1951.
doi:10.1063/1.1699861

14. Smith, P. D. P., "The conical dipole of wide angle," J. App. Phys., Vol. 19, No. 1, 11-13, 1948.
doi:10.1063/1.1697866

15. Tai, C. T., "On the theory of biconical antennas," J. App. Phys., Vol. 19, No. 12, 1155-1160, 1948.
doi:10.1063/1.1715036

16. Hahn, R. and J. G. Fikioris, "Impedance and radiation pattern of antennas above flat discs," IEEE Trans. on Antennas and Propagation, Vol. 21, No. 1, 97-100, 1973.
doi:10.1109/TAP.1973.1140402

17. Papas, C. H. and R. W. King, "Input impedance of wide-angle conical antennas fed by a coaxial line," Poc. IRE, Vol. 37, No. 11, 1269-1271, 1949.
doi:10.1109/JRPROC.1949.234607

18. Papas, C. H. and R. W. King, "Radiation from wide-angle conical antennas fed by a coaxial Line," Proc. IRE, Vol. 39, No. 1, 49-51, 1951.
doi:10.1109/JRPROC.1951.230420

19. Kadakia, D. R. and J. G. Fikioris, "Monopole antenna above a hemisphere," IEEE Trans. Antennas Propagation, Vol. 19, No. 5, 687-690, 1971.
doi:10.1109/TAP.1971.1140018

20. Bolle, D. M. and M. D. Morganstern, "Monopole and conic antennas on spherical vehicles," IEEE Trans. on Antennas and Propagation, Vol. 17, No. 4, 477-484, 1969.
doi:10.1109/TAP.1969.1139479

21. Bevensee, R. M., A Handbook of Conical Antennas and Scatterers, Gordon and Breach, 1973.

22. Kuryliak, D. B., "Biconical line with slots in an axially symmetric electromagnetic field," Proc. International Conference on Direct and Inverse Problems of Electromagenetic and Acoustic Wave Theory, 46-47, 1995.

23. Kuryliak, D. B. and Z. T. Nazarchuk, "One conical waveguide bifurcation problem," Technical Report of Electromagnetic Theory, Institute of Electrical Engineers of Japan, No. EMT9750, 5156, 1997.

24. Kuryliak, D. B., "Wave diffaction from bifurcation of the conical region," Izvestiya Vuzov. Radioelectronika, Vol. 41, No. 9, 13-22, 1998 (in Russian).

25. Goshin, G. G., Electrodynamics Value Boundary Problems for Conical Regions, Izdatelstvo Tomsk Univ., 1987 (in Russian).

26. Doroshenko, V. A. and V. F. Kravchenko, Electromagnetic Waves Diffraction on Unclosed Conical Structures, Fizmatlit, 2009 (in Russian).

27. Mohammadi, A., F. Kaminski, V. Sandoghdar, and M. Agio, "Fluorescence enhancement with the optical (bi-)conical antenna," J. Phys. Chem. C, Vol. 114, No. 16, 7372-7377, 2010.
doi:10.1021/jp9094084

28. Helfenstein, P., A. Mustonen, T. Feurer, and S. Tsujino, "Collimated field emission beams from metal double-gate nanotip arrays optically excited via surface plasmon resonance," Applied Physics Express, Vol. 6, 114301, 2013.
doi:10.7567/APEX.6.114301

29. Legenkiy, M. N. and A. Y. Butrym, "Method of mode matching in time domain," Progress In Electromagnetics Research B, Vol. 22, 257-283, 2010.
doi:10.2528/PIERB10043003

30. Tretyakov, O. A., "Mode basis method," Radiotekhnika and Elektronika, Vol. 31, No. 6, 1071-1082, 1986 (in Russian).

31. Shestopalov, V. P., A. A. Kirilenko, and S. A. Masalov, Convolution-type Matrix Equations in the Theory of Diffraction, Naukova Dumka, 1984 (in Russian).

32. Kuryliak, D. B. and Z. T. Nazarchuk, Analytical-numerical Methods in the Theory of Wave Di®raction on Conical and Wedge-shaped Surfaces, Naukova Dumka, 2006 (in Ukrainian).

33. Kuryliak, D. B. and Z. T. Nazarchuk, "Convolution type operators for wave diffraction by conical structures," Radio Science, Vol. 43, RS4S03, 2008.

34. Kuryliak, D. B., Z. T. Nazarchuk, and V. O. Lysechko, "Diffraction of a plane acoustic wave from a finite soft (rigid) cone in axial irradiation," Open Journal of Acoustics, Vol. 5, 193-206, 2015.
doi:10.4236/oja.2015.54015

35. Kuryliak, D. B. and O. M. Sharabura, "Axisymmetric electromagnetic excitation of a metallic discone scatterer," Telecommunications and Radio Engineering, Vol. 74, No. 4, 563-576, 2015.
doi:10.1615/TelecomRadEng.v74.i7.10

36. Gradshteyn, I. S. and I. M. Ryzhik, Tables of Integrals, Series and Products, Dover, 1972.