
Progress In Electromagnetics Research B, Vol. 68, 73–88, 2016

Diffraction of Axially-Symmetric TM-Wave from Bi-Cone Formed
by Finite and Semi-Infinite Shoulders

Dozyslav B. Kuryliak and Oleksiy M. Sharabura*

Abstract—The problem of axially-symmetric TM-wave diffraction from a perfectly conducting bi-cone
is analyzed. Bi-cone is formed by finite and semi-infinite conical shoulders and illuminated by ring
magnetic source. The problem is formulated in a spherical coordinate system as a mixed boundary
problem for Helmholtz equation. The unknown Hϕ-diffracted field is sought as expansion in series of
eigenfunctions for each region, formed by the bi-cone. The solution of the problem then is reduced to the
infinite set of linear algebraic equations (ISLAE) of the first kind by means of mode matching technique
and orthogonality properties of the eigen functions. The main parts of the asymptotic expressions
of ISLAE matrix elements, determined for large indexes, identify the convolution type operator. The
corresponding inversed operator is represented in an explicit form. Two of these operators are applied to
reduce the problem to the ISLAE of the second kind and to determine the new analytical regularization
method for the solution of wave diffraction problems for bi-conical scatterers. The unknown expansion
coefficients can be determined from the ISLAE with the given accuracy by the reduction method. The
particular cases such as low frequency approximation and transition from bi-cone to conical monopole
and disc-cone scatterer are analyzed. The numerically obtained results are applied to the analysis of
scattering properties of hollow conical monopoles and disc-conical scatterers.

1. INTRODUCTION

Bi-conical antennas possess the broadband properties, provide an omnidirectional radiation, and their
characteristics, which are necessary for signal transmission, can be achieved by the bi-conical structures
of small size. Different types of bi-conic antennas are widely applied in modern communication
technologies; they are also used for reference measurements and system verifications [1–7]. The use
of bi-cones as the radiating elements in the radio communication started more than a century ago [8].
However, the in-depth study of bi-conical antennas was initiated only in the late 1930s. Earliest patents
for bi-conical irradiators and antennas are given in [9, 10]. At the same time, the methods of theoretical
analysis of electromagnetic fields interaction with the bi-conic scatterers started to develop. A convenient
theoretical model of a bi-conical antenna was first introduced in [11]. Then in [12, 13], the problem of
electromagnetic excitation of finite bi-cone was formulated rigorously by taking into account all the
boundary conditions. To solve this problem, the field components were represented as a sum of normal
modes of subdomains. The lowest TEM-mode, which is excited in the bi-conical area, causes the wide-
band properties; it is also taken into account in the field representations. The orthogonality properties
of normal waves were used to reduce the problem to the infinite system of linear algebraic equations
(ISLAE) with the help of the mode-matching technique. Numerous papers were devoted to the problem
of excitation of the bi-cones, using this idea. The focus was on the important particular cases of bi-
conical structures such as finite symmetrical bi-cones formed by the closed conical shoulders [14, 15],
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disc-conical structures [16], conical monopoles [17, 18] and the combinations of metal cones with spherical
sectors [19, 20].

The early articles considered only the structures with wide [14, 17, 18] or narrow [15, 20] conical (bi-
conical) regions, which allowed to simplify the analysis. Scattered characteristics of different bi-cones
with numerous geometrical parameters obtained through mode-matching can be found in [21]. These
works formed the classic theory of electromagnetic waves interaction with the perfectly conducting finite
bi-cones based on the mode matching technique.

Kontorovich-Lebedev integral transformation and the semi-inversion technique were introduced
in [22–24] for the analysis of wave diffraction from perfectly conducting bi-cones formed by semi-infinite
and truncated cones. In [25] Kontorovich-Lebedev integral transformation and Wiener-Hopf method
were applied to the analysis of the radially conducting finite bi-cones. In [26], this integral transformation
and Riemann-Hilbert method were used for wave diffraction analysis of the radially slotted semi-infinite
bi-cones.

The widespread use of bi-conical elements in different areas of modern physics and technology,
including nanotechnologies [27, 28], requires a deep study of the physical properties of electromagnetic
fields interaction with bi-conical structures. Contemporary theoretical studies of the scattering
properties of the bi-cones are based on the mathematical modeling, which uses the direct numerical
methods [1, 2] and the mode-matching technique in time domain [29] which is based on the Mode Basis
Method [30].

We return to the problem of wave diffraction from bi-cones with the finite shoulder/s once again
because the classic theory is based on the formalism of the mode-matching. The question of how to
properly take into account the singularity of the field component normal to the edges is not answered by
this theory. Also, the rules for reduction of ISLAE, which ensure obtaining the solutions in the required
class of sequences, are unknown. Here we offer the analytical regularization method (semi-inversion
method) to solve this diffraction problem. Our approach is based on the formulation of the mixed
boundary diffraction problem and analytical inversion of the singular part of the appropriate operator.
This approach provides effective algorithms for diffracted field calculations to satisfy all the necessary
conditions. The idea of analytical regularization was applied to the analysis of wave diffraction from
waveguide discontinuities in [31]. Our technique was earlier applied to the analysis of wave diffraction
on the conical (bi-conical) structures in [32–35].

2. STATEMENT OF THE PROBLEM

Let us consider the perfectly conducting bi-conical surface Q = Q1
⋃

Q2 in spherical coordinate system
(r, θ, ϕ), where Q1 : {r ∈ (0,∞), θ = γ1;ϕ ∈ [0, 2π)} and Q2 : {r ∈ (0, a1), θ = γ2;ϕ ∈ [0, 2π)} are the
semi-infinite and finite hollow cones respectively with γ2 > γ1 and γ1(2) �= π/2 (see Fig. 1).

(a) (b) (c)

Figure 1. Geometrical scheme; (a) semi-infinity bi-cone; (b) conical monopole; (c) disc-conical antenna.
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Let bi-cone Q be excited by the ring source with magnetic current density �J(0, 0,−Jϕ), where

Jϕ(r, θ) =
I

(m)
ϕ (r0, θ0)
r0 sin θ0

δ(r − r0)δ(θ − θ0), (1)

where I
(m)
φ is the magnetic current, δ(. . .) the Dirac delta function, and r0, θ0 are source spherical

coordinates, 0 < r0 < a1, γ1 ≤ θ0 ≤ γ2. Time factor e−iωt is suppressed throughout this paper.
Since I

(m)
ϕ is symmetrical and independent azimuth angle ϕ then, following from Maxwell equations,

the source in Equation (1) excites three nonzero axially symmetric field components Er, Eθ,Hϕ(r, θ),
and the electric field is expressed in terms of Hϕ by

Er = − 1
iωε

1
r sin θ

∂

∂θ
(sin θHϕ),

Eθ =
1

iωε

1
r

∂

∂r
(rHϕ).

(2)

Here ε is the dielectric permittivity of the medium. Taking into account the axial symmetry of the
initial problem, let us formulate the mixed value boundary problem to determine Hϕ-field diffracted
from Q as

ΔHϕ − Hϕ

r2 sin2 θ
+ k2Hϕ = 0, (3)

where k = ω
√

εμ is the wave number, k = k′ + ik′′, k′, k′′ > 0; μ is the magnetic permeability; Δ is the
Laplace operator,

Δ =
∂2

∂r2
+

2
r

∂

∂r
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
.

The unknown Hϕ-field satisfies the boundary condition at Q as

1
sin θ

∂

∂θ

[
sin θ(Hϕ + H i

ϕ)
]
r,θ∈Q

= 0, (4)

where H i
ϕ is the known magnetic component of the incident field produced by the source in Equation

(1). We search for the solution of the mixed value boundary problem in Equations (3), (4) in class of
functions that satisfy the Silver-Muller radiation condition in form

lim r
r→∞

[
�ir × �H + Z−1 �E

]
= 0, (5)

where Z =
√

μ/ε is the medium wave resister, as well as energy limitation condition as∫
V

(
ε| �E|2 + μ| �H|2

)
dv < ∞. (6)

Here V is any finite volume of integration. To determine the incident field H i
ϕ(r, θ), we solve the

auxiliary problem of semi-infinite bi-cone Q∞ excitation by the ring source in Equation (1), where
Q∞ = Q∞

1

⋃
Q∞

2 and Q∞
l = {r ∈ [0,∞), θ = γl, ϕ ∈ [0, 2π)} , l = 1, 2. Using the field representation as

superposition of elementary bi-conical harmonics, we find that

H i
ϕ(r, θ) =

iωε√
ρ

∞∑
n=1

BnΨνn−1/2(cos θ)

{
Kνn(ρ)Iνn(ρ0), r ≥ r0,

Iνn(ρ)Kνn(ρ0), r ≤ r0.
0 ≤ r < ∞, γ1 ≤ θ ≤ γ2. (7)

Here Iν(ρ), Kν(ρ) are modified Bessel and Macdonald functions; ρ = sr, ρ0 = sr0; s = −ik;

Bn = −ρ
1/2
0 bnI(m)

ϕ Ψνn−1/2(cos θ0); (8)

Ψνn−1/2(cos θ), n = 1, 2, 3, . . . are the eigen-functions determined from the solution of Sturm-Liouville’s
problem as

�
Δθ Ψνn−1/2 = −(ν2

n − 1/4)Ψνn−1/2,
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which satisfies the boundary condition in Eq. (4) for θ = γ1 and θ = γ2, where
�
Δθ=

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ
.

Functions Ψνn−1/2 are bounded and orthogonal with weight sin θ at the angle interval γ1 ≤ θ ≤ γ2, and
we represent these functions as

Ψνn−1/2(cos θ) =

⎧⎪⎨
⎪⎩

1
sin θ

, n = 1,

∂

∂θ
[Rνn−1/2(cos θ)], n > 1,

(9)

where
Rν−1/2(cos θ) = Pν−1/2(cos θ)Pν−1/2(− cos γ1) − Pν−1/2(− cos θ)Pν−1/2(cos γ1), (10)

Pν−1/2(cos θ) is the Legendre function; {νn}∞n=1 is the growing sequence of real positive roots of
transcendental equation

Rνn−1/2(cos γ2) = 0 (11)

with ν1 = 1/2 and νn �= n − 1/2 for n = 2, 3, 4, . . .. The known coefficients bn in Equation (8) are
determined as

bn =

{ {ln[ctg(γ1/2)tg(γ2/2)]}−1 , n = 1,

2νn

[
sin γ2(ν2

n − 1/4)∂/∂νRνn−1/2(cos γ2)∂/∂γRνn−1/2(cos γ2)
]−1

, n > 1.

The first term in the representation in Equation (7) corresponds to TEM-wave with two nonzero
components in biconical area (Er ≡ 0, Eθ, Hϕ �= 0), and the other terms are elementary axially
symmetric TM-modes. From expressions (2) and (7) it follows that the field components satisfy the
radiation and boundary conditions, and for r → 0 we arrive at

Er = O(rν2−3/2), Eθ = O(r−1),Hϕ = O(1). (12)
Following from Equation (12), the TEM- and the lowest TM-modes determine the behaviour of

Eθ-, Hϕ- and Er-components at the biconical vertex respectively. This shows that current density at
the conical surfaces Jr ∼ rHϕ(r, γ1(2)) → 0 for r → 0 and the vertices of conical shoulders in Q (Q∞)
are electrically isolated.

3. SOLUTION OF THE DIFFRACTION PROBLEM

For the solution of the initial diffraction problem, let us introduce the regions as follows
D1 : {r ∈ (0, a1), θ ∈ [γ1, γ2)} , D2 : {r ∈ (0, a1), θ ∈ (γ2, π]} , D3 : {r ∈ (a1,∞), θ ∈ [γ1, π]} . (13)
Since the unknown Hϕ-field component satisfies Equation (3), we represent it by means of

eigenfunctions in the appropriate domains as

Hϕ(ρ, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iωε√
ρ

∞∑
n=1

x(1)
n Ψνn−1/2(cos θ)

Iνn(ρ)
Iνn(ρ1)

, (r, θ) ∈ D1,

iωε√
ρ

∞∑
n=1

x(2)
n

∂

∂θ
Pμn−1/2(− cos θ)

Iμn(ρ)
Iμn(ρ1)

, (r, θ) ∈ D2,

iωε√
ρ

∞∑
n=1

x(3)
n

∂

∂θ
Pzn−1/2(− cos θ)

Kzn(ρ)
Kzn(ρ1)

, (r, θ) ∈ D3.

(14)

Here x
(1)
n , x

(2)
n , x

(3)
n are unknown expansion coefficients; ρ1 = sa1; {zn}∞n=1, {μn}∞n=1 are growing

sequences of the real positive roots of transcendental equations
Pzn−1/2(− cos γ1) = 0, (15a)
Pμn−1/2(− cos γ2) = 0. (15b)
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The conditions in Equations (11), (15) guarantee satisfying the boundary condition in Equation (4) at
the conical surfaces for field presentation in Equation (14), as well as the finiteness of energy in the
vertex, and the radiation condition at infinity.

To find the unknown expansion coefficients in Equation (14), we use the mode matching as

HD3
ϕ |r=a1+0
γ1<θ<π

=

⎛
⎜⎜⎝

HD2
ϕ |r=a1−0
γ2<θ<π

,

HD1
ϕ |r=a1−0 + H

(i)
ϕ |r=a1−0

γ1<θ<γ2

;
ED3

θ |r=a1+0
γ1<θ<π

=

⎛
⎜⎜⎝

ED2
θ |r=a1−0
γ2<θ<π

,

ED1
θ |r=a1−0 + E

(i)
θ |r=a1−0

γ1<θ<γ2

.
(16)

Here HDα
ϕ (ρ, θ), EDα

θ (ρ, θ), α = 1, 2, 3 are diffracted field in D1 and total field in D2, D3. In order to

take into account the singularity of Et
θ(r, θ) = O(

�
ρ
−1/2

) for
�
ρ→ 0, where

�
ρ is the distance to the edge

in local coordinate system. We present these equations by way of

lim
N→∞

N∑
n=1

x(3)
n P 1

zn−1/2(− cos θ)

(r,θ)∈D3

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− lim
K→∞

K∑
k=1

[
x

(1)
k + BkKνk

(ρ1)Iνk
(ρ0)

]
Ψνk−1/2(cos θ),

(r,θ)∈D1

lim
P→∞

P∑
p=1

x(2)
p P 1

μp−1/2(− cos θ);

(r,θ)∈D2

(17a)

lim
N→∞

N∑
n=1

x(3)
n P 1

zn−1/2(− cos θ)
K ′

zn
(ρ1)

Kzn(ρ1)
(r,θ)∈D3

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− lim
K→∞

K∑
k=1

[
x

(1)
k

I ′νn
(ρ1)

Iνn(ρ1)
+ BkK

′
νk

(ρ1)Iνk
(ρ0)]

]
Ψνk−1/2(cos θ)

(r,θ)∈D1

,

lim
P→∞

P∑
p=1

x(2)
p P 1

μp−1/2(− cos θ)
I ′μn

(ρ1)
Iμn(ρ1)

.

(r,θ)∈D2

(17b)

Here known coefficients Bk, k = 1, 2, 3, . . . are defined in Equation (8); P 1
η−1/2(·) is the associated

Legendre function, which is defined in [36] by the expression P 1
ν−1/2(± cos θ) = ±∂/∂θ[Pν−1/2(± cos θ)];

the prime indicates the derivation with respect to the argument.
In order to reduce series Equations (17) to ISLAE, we use a property of orthogonality of Legendre

functions, which leads to [32]

P 1
zn−1/2(− cos θ) = q(zn, γ2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− lim
K→∞

K∑
k=1

α(νk; γ1, γ2)
ν2

k − z2
n

Ψνk−1/2(cos θ), for γ1 ≤ θ < γ2,

lim
P→∞

P∑
p=1

α(μp; γ2)
μ2

p − z2
n

P 1
μp−1/2(− cos θ), for γ2 < θ ≤ π.

(18)

Here

q(zn, γ2) = (z2
n − 1/4)Pzn−1/2(− cos γ2),

α(νk; γ1, γ2) = −
{ {ln[ctg(γ1/2)tg(γ2/2)]}−1 , k = 1,

2νk

[
(ν2

k − 1/4)∂/∂νRνk−1/2(cos γ2)
]−1

, k > 1,

α(μp; γ2) = −2μp

[
(μ2

p − 1/4)∂/∂μPμp−1/2(− cos γ2)
]−1

.
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Then we prove the following theorem on the convergence of the series in Equation (18):
Theorem. For all γ2 which belongs to γ1 < γ2 < π, the upper and lower series on the right-hand part
of Equation (18) are uniformly convergent to the function P 1

zn−1/2(− cos θ)/q(zn, γ2) for any θ ∈ [γ1, γ2]
and θ ∈ [γ2, π] respectively.
Proof. Let us consider the integral as follows

Jn(θ) =
1

2πi

∫
CR

tΨt−1/2(cos θ)dt

(t2 − z2
n)(t2 − 1/4)Rt−1/2(cos γ2)

. (19)

Here Ψt−1/2(cos θ) = ∂/∂θ [Rt−1/2(cos θ)]; CR is the circular integration path in complex plane t, the
point t = 0 and R are the center and radius of this circle respectively; CR outline encompasses the
simple poles of the integrand at t = ±1/2, t = ±zn and t = ±νk (k = 1, 2, 3, . . .). For |t| → ∞ the
integrand as a function of t tends to zero not slower than t−2, therefore Jn(θ) → 0 if R → ∞. Then,
taking into account that

lim
t→±1/2

∂/∂θ [Rt−1/2(cos θ)]
Rt−1/2(cos θ)

=
1

ln[ctg(γ1/2)tg(γ2/2)] sin θ
(20)

and applying the residues theorem, we arrive at the statement of the theorem for θ ∈ [γ1, γ2]. For
θ ∈ [γ2, π] the theorem can be proved in the same way.

Let us substitute the series in Equation (18) into Equations (17). Next, limiting the finite number
of unknowns and excluding x

(1)
k , x

(2)
p , we come to the finite system of linear algebraic equations as

follows
N∑

n=1

xn

μ2
p − z2

n

ρ1W [KznIμp ]ρ1

Iμp(ρ1)Kzn(ρ1)
= 0, p = 1, P ,

N∑
n=1

xn

ν2
k − z2

n

ρ1W [KznIνk
]ρ1

Iνk
(ρ1)Kzn(ρ1)

= f̄k, k = 1,K,

(21)

where xn = q(zn, γ2)x
(3)
n , W [f, φ]ρ = f(ρ)φ′(ρ) − f ′(ρ)φ(ρ), N = P + K;

f̄k =
√

ρ0I
(m)
ϕ dkΨνk−1/2(cos θ0)

Iνk
(ρ0)

Iνk
(ρ1)

, |ρ0| < |ρ1|, (22)

dk =

{
1, k = 1,

[sin γ2∂/∂γRνk−1/2(cos γ2)]−1, k > 1.

The reason we introduce this limitation is to provide the correct transition from Equations (17)
to the ISLAE (P,K,N → ∞), the solution of which satisfies the Meixner condition at the conical
edge. For this purpose, we introduce a growing sequence of roots {νk}∞k=1, {μp}∞p=1 of transcendental
Equations (11), (15b) as

{ξj}∞j=1 = {νk}∞k=1 ∪ {μp}∞p=1. (23)

Next, in Equations (21) we pass to the limit P,K,N → ∞ (N = P + K) and arrange the ISLAE
according to sequence (23) as

A11X = F. (24)

Here X = {xn}∞n=1 is the unknown vector, xn = x
(3)
n (z2

n − 0.25)Pzn−1/2(− cos γ2); A11 is the infinite
matrix with the elements given as

A11 :

{
a

(11)
jn =

ρ1W [KznIξj
]ρ1

[ξ2
j − z2

n]Iξj
(ρ1)Kzn(ρ1)

}∞

j,n=1

; (25)

F = {fj}∞j=1 is the known vector with

fj =

{
f̄j, ξj ∈ {νk}∞k=1,

0, ξj /∈ {νk}∞k=1.
(26)
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The well-known particular case of the excitation of the bi-cone Q by TEM-mode, we obtain from
Equation (7) having turn ρ0 → 0 as

H i
ϕ(r, θ) = − iωεC

ln[ctg(γ1/2)tg(γ2/2)]
K1/2(ρ)
sin θ

√
ρ

, |ρ| > 0

with C = lim
ρ0→0

{I(m)
ϕ (ρ0, θ0)

√
ρ0I1/2(ρ0)/ sin θ0} = const. This leads to the simplification of

Equation (22) as f̄j = C{I1/2(ρ1)}−1 for j = 1 and f̄j = 0 for j > 1.
Next, we apply the analytical regularization procedure for reducing ISLAE in Equation (24) to the

ISLAE of the second kind.

4. REGULARIZATION OF ISLAE

Taking into account the asymptotic properties of the modified Bessel and Macdonald functions for large
indices [36], we find that

a
(11)
jn =

1
ξj − zn

+

⎧⎨
⎩

O
(
〈ξjzn(ξj − zn)〉−1

)
, ξj , zn >> |sa1|;

O
(
(sa1/2)2

)
, |sa1| → 0.

(27)

Let us introduce the operator formed with the main parts of the asymptotic expression (27) and
the inverse operator as [32, 35]

A :
{

ajn = 〈ξj − zn〉−1
}∞

j,n=1
, (28a)

A−1 :
{

τkj =
〈
{M−1

− (ξj)}′
M ′

−(zk)(zk − ξj)
〉−1

}∞

k,j=1

. (28b)

Here, the product of operators in Equation (28) represents the identity matrix I, A−1A = I [32, 33];

{[M−(ξj)]−1}′ =
∂

∂ν
[M−(ξj)]

−1 , M ′
−(zn) =

∂

∂ν
[M−(zn)] ,

where M−(ν) is determined from the factorization of the even meromorphic function M(ν), which is
regular in the strip Π : {|Reν| < 1/2} with simple zeroes and poles at ν = ±zk, ν = ±ξj that are located
at the real axis out of the Π;

M(ν) = M+(ν)M−(ν) =
Pν−1/2(− cos γ1) cos(πν)

(ν2 − 1/4)Pν−1/2(− cos γ2)Rν−1/2(cos γ2)
, (29)

M+(ν), M−(ν) are split functions, regular in the right Reν > −1/2 and in the left Reν < 1/2 half-planes
respectively; M(ν) = O(ν−1) and M+(ν) = M−(−ν) = O(ν−1/2) if |ν| → ∞ in the regularity region;

M−(ν) =

2A(γ1, γ2)eνχ
∞∏

k=1

(1 − ν/zk)eν(π−γ1)/(kπ)

(1 − ν/(1/2))
∞∏

k=1

(1 − ν/μk)eν(π−γ2)/(kπ)
∞∏

k=1

(1 − ν/νk+1)eν(γ2−γ1)/(kπ)

,

where

A(γ1, γ2) = i

[
P−1/2(− cos γ1)

P−1/2(− cos γ2)
[
P−1/2(cos γ2)P−1/2(− cos γ1) − P−1/2(− cos γ2)P−1/2(cos γ1)

]
]1/2

,

χ =
π − γ2

π
ln

π − γ2

π
− π − γ1

π
ln

π − γ1

π
+

γ2 − γ1

π
ln

γ2 − γ1

π
.

The formulas for effective calculation the matrix elements τkj in Equation (28b) are presented in
Appendix A.
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Next, we formulate original diffraction problem via the ISLAE of the second kind as follows

X − A−1(A − A11)X = A−1F. (30)

The technique described above is elaborated in [32–34] and called the analytical regularization
procedure. ISLAE in Equation (30) admits the solution in the class of sequences b(σ) : {||X|| =
sup

n
|xn|, lim

n→∞ |xnnσ| → 0} for 0 ≤ σ < 1/2. This fulfills all the necessary conditions for the existence of

a unique solution of ISLAE in Equation (30), including the Meixner condition on the edge.
The proof of these statements is based on the use of asymptotic estimates for matrix elements in

Equations (25) and (28b), that are given in the expression (27) and by the formula

τnj =
j,n→∞

O

(
ξ
−1/2
j z

1/2
n

zn − ξj

)
. (31)

ISLAE (30) is valid for γ1(2) �= π/2 (γ2 > γ1).
We represent unknown coefficients in (14) through the solution (30) by way of

x
(1)
j = −α(νj ; γ1, γ2)Kνj (ρ1)Iνj (ρ1)

∞∑
n=1

xn

ν2
j − z2

n

ρ1W [KνjKzn ]ρ1

Kνj(ρ1)Kzn(ρ1)
,

x
(2)
j = α(μj ; γ2)Kμj (ρ1)Iμj (ρ1)

∞∑
n=1

xn

μ2
j − z2

n

ρ1W [KμjKzn ]ρ1

Kμj (ρ1)Kzn(ρ1)
,

x
(3)
j = xj/q(zj , γ2).

(32)

Taking into account the correlations in Equations (2), (14) and (32), we get the definitive expressions
for field representation anywhere in biconical and conical regions.

5. LOW FREQUENCY SOLUTION

Let us rewrite the basic ISLAE in Equation (30) by way of

xk =
∞∑

q=1

τkq

∞∑
n=1

(aqn − a(11)
qn )xn +

∞∑
q=1

τkqfq, (33)

where k = 1, 2, 3, . . ..
We take into account the low frequency (|sa1| → 0) asymptotic expression (27) and estimate the

terms in Equations (25) and (32) as

Iνk
(sr0)/Iνk

(sa1) = (r0/a1)
νk
[
1 + O((sr0/2)2, (sa1/2)2)

]
(34)

sa1W [KηjKzn ]sa1/[(η
2
j − z2

n)Kηj (sa1)Kzn(sa1)] = 1/(ηj + zn) + O((sa1/2)2), (35)

where
ηj = νj(μj).

Neglecting the terms of order |sa1/2|2 and |sr0/2|2, we immediately derive the approximate solution
(32) as

xk =
√

sr0I
(m)
ϕ

⎡
⎣ τk1

sin θ0

(
r0

a1

)1/2

+
∞∑

q=2

τkqdqΨνq−1/2(cos θ0)
(

r0

a1

)νq

⎤
⎦ , (36)

and

x
(1)
j = − α(νj ; γ1, γ2)

2νj

∞∑
q=1

cq(νj)fq,

x
(2)
j =

α(μj ; γ2)
2μj

∞∑
q=1

cq(μj)fq,

(37)
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where

cq(ηj) =
∞∑

n=1

τnq

ηj + zn
. (38)

Let us introduce a contour integral

Jjq =
1

2πi

∫
CR

1
(ηj + t)(t − ξq)M−(t)

dt, (39)

where the circle CR with radius |t| = R that envelopes the simple poles of the integrand at t = zn

(n = 1, 2, 3 . . .) and t = −ηj. The integrand in Equation (39) decays as t−3/2, if R → ∞. Next, using
the residual theorem and Equation (28b), it is found that

cq(ηj) =
1

[M−1
− (ξq)]

′M+(ηj)(ηj + ξq)
. (40)

Equations (36), (37) and (40) give the approximate solution of the diffraction problem in low-frequency
case.

6. TRANSITION TO THE CONICAL MONOPOLE (γ1 = π/2) AND TO THE
DISC-CONE SCATTERER (γ2 = π/2)

For these two particular cases the wave diffraction problems are reduced to ISLAE in Equation (30) by
the same way as in the general case. Here instead of using Equation (11), we use the transcendental
equation

Pνn−1/2(cos γα) − Pνn−1/2(− cos γα) = 0, (41)

where α = 1, 2 for disc-cone and conical monopole respectively, to determine the indexes νn > 0
(n = 1, 2, 3, . . .) for eigen function for the bi-conical region (ν �= 2n + 1/2, ν1 = 1/2). Taken this into
account, we derive the regularization operator in Equation (28b) using the functions

M(ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos(πν)
(ν2 − 1/4)Pν−1/2(− cos γ2)

[
Pν−1/2(cos γ2) − Pν−1/2(− cos γ2)

] ,
for monopole (γ1 = π/2),

Pν−1/2(− cos γ1) cos(πν)

(ν2 − 1/4)
[
Pν−1/2(0)

]2 [
Pν−1/2(− cos γ1) − Pν−1/2(cos γ1)

] ,
for disc-cone (γ2 = π/2).

(42)

that are obtained from kernel function in Equation (29), if γ1(2) → π/2. The eigen-functions for bi-
conical region Ψνn−1/2(cos θ) are determined here as in Equation (9) with

Rνn−1/2(cos θ) = Pνn−1/2(− cos θ)− Pνn−1/2(cos θ). (43)

7. NUMERICAL CALCULATION

All characteristics of the scattered field are calculated by reduction of ISLAE in Equation (30). The
order of reduction has been chosen from the condition N = |sa1| + q with q = (4 ÷ 10). Based on the
solution of finite system of linear algebraic equations, we analyze far-field characteristics for bi-cone Q
with the different geometrical parameters and exiting source location.

Let us express the far-field pattern and radiation power as

D(θ) = lim
r→∞

∣∣∣rHϕe−ikr
∣∣∣ , (44)

W = lim
r→∞

1
2

∫ 2π

0
dφ

∫ π

γ1

EθH
∗
φr2 sin θdθ, (45)
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where Hϕ and Eθ for their physical matter determine the total field components in region D3; upper
mark (*) shows the complex conjugate.

We have calculated the dimensionless components as [Z/(kI
(m)
ϕ )]Hϕ and [1/(kI

(m)
ϕ )]Eθ. The curves

presented here show the characteristics of the field, diffracted from the bi-cone, which is excited by
the magnetic current of the unit amplitude. Such electrodynamic system is placed in a hypothetical
environment with single electrical and single magnetic parameters. With the help of Equations (44),
(45), we analyze the scattering properties of the bi-cone Q. We focus here on the two important cases
and consider the diffraction from the conical monopoles and disco-conical scatterers, which we obtain
from Q with γ1 → π/2, π/2 < γ2 < π and γ2 → π/2, 0 < γ1 < π/2 respectively.

In most papers the considered monopoles are excited by sources located near the conical vertex.
This ensures the best symmetry of the field and the domination of the lower TEM-mode in the excited
source. To determine the influence of the higher excitatory modes on the far field formation let us
analyze the influence of the source location on such formation. Here we model the conical monopoles
using the bi-cones with γ1 = 89◦. Due to the symmetry of the far field distribution we plot the radiation
patterns only for 90◦ < θ < 180◦ (see Fig. 2).

(a) (b) (c) (d)

Figure 2. Influence of the source location on the far field patterns of conical monopoles for γ1 = 89◦,
γ2 = 150◦; ka1 = 6.28; (a), (c) kr0 = 1.0; (b), (d) kr0 = 5.87; (a), (b) θ0 = γ2; (c), (d) θ0 = γ1. The
thin lines represent the excitation by TEM-mode. The thick lines represent the excitation by all modes
of the source.

The bold curves in this figure correspond to the case, when all the necessary modes radiated by
the source are taken into account, including TEM-mode. The thin line shows the far field distribution,
which takes into consideration only the lowest TEM-mode.

Let us consider two cases. In the first case, the ring magnetic current is located on the finite
shoulder (Fig. 2(a), 2(b)), and in the second case, it is located on the plane (Figs. 2(c), 2(d)). As
follows from Figs. 2(a), 2(c), the radiation field in these two cases is formed by TEM-source’s wave, if
kr0 ≤ 1.0.

When the source moves away from the top of the cone and r0 > λ/2, where λ is the wavelength, the
excitation of the higher source’s modes becomes effective, and the far field patterns change significantly
(Figs. 2(b), 2(d)). As follows from this figure, the radius of the source affects the shape of the far field
patterns significantly, regardless of the shoulder on which the source is located.

To estimate the potential possibilities of control of the radiation patterns, we investigate the
influences of the opening angle γ2 on the far field distribution. These influences for the two lengths
of the shoulder are shown in Fig. 3. To simplify the analysis we place the source near the top of the
cone. As follows from Fig. 3, the frequent oscillations of the far field are observed in the shady region
γ2 < θ < π. The frequency of these oscillations increase with the increase of the length of the shoulder,
and for γ2 < 130◦ the major radiation is directed along the plane. The growth of the parameter γ2

leads to narrowing of the conical cavity and to turning of the main lobe of the far field in the direction
of the monopole’s generatrix.

Next, we plot the monopole’s radiation power as functions of the shoulder length for several opening
angles γ2 to analyze its wide-band scattering characteristics (see Fig. 4(a)). In this figure we observe the
effect of the resonance power scattering, if ka1 = 2.0 ÷ 2.2. We observe this phenomenon for different
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Influence of the opening angle γ2 on the far field magnitude of the monopole for γ1 = 89◦;
kr0 = 0.2; θ0 = γ1; (a), (e) γ2 = 110◦; (b), (f) γ2 = 120◦; (c), (g) γ2 = 130◦; (d), (h) γ2 = 140◦; (a)–(d)
ka1 = 12.56; (e)–(h) ka1 = 18.84.

(a) (b) (c)

Figure 4. Dependencies of the conical monopole radiation power on the ka1 (a) for kr0 = 0.02;
γ1 = 89◦, θ0 = γ1; 1 γ2 = 110◦; 2 γ2 = 130◦; 3 γ2 = 150◦; 4 γ2 = 170◦. Far field patterns of the
monopole (b), (c) for: 1 ka1 = 9; 2 ka1 = 12; 3 ka1 = 15; (b) γ2 = 130◦; (c) γ2 = 150◦.

angles γ2. The maximum of monopole’s radiation power can be seen for scatterers with the narrow
bi-conical area (curve 1 in Fig. 4(a), Δγ21 = 21◦, Δγ21 = γ2 − γ1).

The growth of the bi-conical region leads to falling of the resonance maximum. As follows from
Fig. 4(a), the growth of the bi-conical area from Δγ21 = 21◦ (curve 1) to Δγ21 = 81◦ (curve 4) reduces
the resonance peak almost by one order of magnitude. From this figure we also see that the radiation
power from monopoles with a wide bi-conical area (Δγ21 > 40◦) and ka1 > 5 practically does not
depend on ka1. Therefore, it is possible that monopoles with such parameters possess the wide-band
scattering properties. Figs. 4(b), 4(c) show the influence of the shoulder length on the far field pattern
of the monopole with different width of bi-conical area. As follows from these figures, the increase of
the monopole’s shoulder length from ka1 = 9 to ka1 = 15 does not significantly influence the far field
patterns all over the angular range of radiation for the monopoles with wide bi-conical area (Δγ21 > 40◦).
This confirms the wide-band properties of conical monopoles.

Let us consider the disc-conical antenna formed by the bi-cone Q with γ2 = 89◦ and γ1 < γ2 to
analyze its scattering characteristics and compare them with the conical monopole scattering properties.
The influences of the source location on the far field patterns for disc-conical scatter are shown in the
Fig. 5. The far field diffracted from disc-cone is also totally formed by the lowest TEM-source’s wave if
kr0 ≤ 1.0 (see Figs. 5(a), 5(c)). The higher source’s modes become effective and the far field patterns
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(a) (b) (c) (d)

Figure 5. Influences of the source location on the far field patterns of disc-cone for γ1 = 30◦, γ2 = 89◦,
ka1 = 6.28; (a), (c) kr0 = 1.0; (b), (d) kr0 = 3.62; (a), (b) θ0 = γ2; (c), (d) θ0 = γ1. The thin lines
represent the excitation by TEM-mode. The thick lines represent the excitation by all modes of the
source.

(a) (b)

Figure 6. Influences of the opening angle γ1 on the far field diffracted from disc-cone for γ2 = 89◦,
θ0 = γ2, kr0 = 0.02; 1 γ1 = 20◦; 2 γ1 = 30◦; 3 γ1 = 40◦; 4 γ1 = 50◦; (a) ka1 = 12.56; (b) ka1 = 18.84.

change significantly, if r0 > λ/2 (see Figs. 5(b), 5(d)).
Next, we investigate the influence of the conical angle γ1 on the far field scattered by the disc-cone.

These influences for the different radiuses of the disc are shown in Fig. 6. As follows from Fig. 6, the main
radiation of the disc-cone is directed along the semi-infinite conical surface for all the considered angles
γ1. In this figure we also observe the far field patterns in the shadow region (see Fig. 6, π/2 < θ < π)
and find that they are similar to those well-known for the disc illuminated axial-symmetrically in free
space [32].

Here we see the field oscillations that do not depend on the width of the bi-conical region Δγ21.
Their frequency is growing with the growth of the disc’s radius, and the main maximum in the shadow
region is located close to the axis of symmetry of the disc-cone. The far field distribution for the
disc-cone in the lighted region (γ1 < θ < π/2) depends significantly on angle γ1 (see Figs. 6(a), 6(b)).

To study the wide-band scattered characteristics of the disc-cone we analyze its radiation power a
functions of the disc’s radius for different values γ1 (see Fig. 7(a)). In this figure we observe the effect
of resonance scattering, if ka1 = 2.0 ÷ 3.0 for different angles γ1. The maximum of resonance radiation
is observed for the disc-cone with the narrow bi-conical region (see curve 4 in Fig 7(a), Δγ21 = 21◦).
Here we also see that the extension of the bi-conical region of the disc-cone’s scatterer leads to the
fall of the resonance maximum. As follows from Fig. 7(a), the extension of the bi-conical area from
Δγ21 = 21◦ (see curve 4) to Δγ21 = 81◦ (see curve 1) reduces the resonance peak by more than one
order of magnitude.

In this figure we also see that the radiation power from the disc-cone with wide bi-conical area
(Δγ21 > 50◦) and ka1 > 9 practically does not depend on ka1. Therefore, it is possible that the
disc-cones with such parameters possess the wide-band scattering properties. Figs. 7(b), 7(c) show the
influence of the length of the disc’s radius on the far field scattered by the disc-cone with different width
of bi-conical area.
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(a) (b) (c)

Figure 7. Dependencies of the disc-cone radiation power on the ka1 (a) for γ2 = 89◦, θ0 = γ2;
kr0 = 0, 02; 1 γ1 = 8◦; 2 γ1 = 28◦; 3 γ1 = 48◦; 4 γ1 = 68◦. Far field patterns of the disc-cone (b), (c)
for 1 ka1 = 9; 2 ka1 = 12; 3 ka1 = 15; (b) γ1 = 28◦; (c) γ1 = 48◦.

(a) (b)

Figure 8. Testing the satisfaction of the mode-matching condition on the spherical segment with
r = a1, ka1 = 6.28, kr0 = 0, 02: (a) γ1 = 50◦,γ2 = 89◦, θ0 = γ2; (b) γ1 = 89◦, γ2 = 130◦, θ0 = γ1,
1 r = a1 + 0; 2 r = a1 − 0.

(a) (b)

Figure 9. Comparison of the normalized far field patterns for hollow and closed conical monopoles
with γ1 = 89◦, γ2 = 150◦, θ0 = γ2; kr0 = 0.2; (a) ka1 = 1.0; (b) ka1 = 5.0.

The behavior of the curves in these figures shows the wide-band properties of the disc-cone that
look better than those for the conical monopole because here we observe the lesser influence of the
frequency parameter on the distribution of the far field.

To verify the calculations we test the satisfaction of the mode-matching conditions on the virtual
spherical segment with radius r = a1 for different bi-cones. Some typical results are presented in Fig. 8.
Here we observe good adjustment |Hϕ| for all segment’s area γ1 < θ < π.

We verify our results by comparing them to those obtained for conical monopole closed by the
spherical segment and excited by TEM-wave. Fig. 9 shows the normalized far field magnitudes: the
dashed line corresponds to the hollow monopole (our results), and the solid line corresponds to the
closed monopole (obtained in [18]). In these figures we see a good agreement of the normalized field’s
magnitude for all observation angles θ, when the monopole’s length is small (Fig. 9(a)), and we observe
a slight difference between them for the longer monopole’s shoulder (Fig. 9(b)). Such difference exists
because of the different edge condition.
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8. CONCLUSIONS

The mode matching technique and the analytical regularization procedure is developed for the solution
of canonical diffraction problem of axially-symmetric excitation of bi-cone, formed by the finite and
semi-infinite shoulders. With these techniques the diffraction problem has been reduced to ISLAE of
the second kind, the solution of which satisfies all the necessary conditions. These solutions can be
obtained with given accuracy by means of reduction methods. The simple low frequency solution in an
explicit form and the transition from the bi-cone to the conical monopole and the disc-cone scatterer
were obtained.

Numerical solution is used for examination of the scattering characteristics of two widely used
structures: the conical monopole and the disc-cone. The scattering characteristics have been analyzed
in a wide frequency range and for different locations of the excited source. It is shown that if the
source is located close to the conical vertex (kr0 < 1), then the TEM-source’s mode dominates for both
structures. Moving the source away from the vertex (r0 > λ/4) leads to effective excitation of higher
waves, which influences the far fields distribution significantly. The radiation power dependences on
different scatterer parameters are analyzed, and the resonance character of scattering in low frequency
range a1 < λ/2 is found. The main amplitude of the scattered power is found to decrease, and the
wide-band scattering property becomes better when the bi-conical area is wider for both structures.
These properties became more prominent for the disc-cone with a1 > 3λ/2.

APPENDIX A.

Taking into account the representation of the kernel function in Equation (29), here we show the formulas
for effective calculation of the elements of matrix operator in Equation (28b) as:

M ′
−(zn) =

cos(πzn)
∂

∂z
Pzn−1/2(− cos γ1)

(z2
n − 1/4)Pzn−1/2(− cos γ2)Rzn−1/2(cos γ2)M+(zn)

;

{
[M−(ξn)]−1

}′
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2π−1M+(1/2) ln
(
ctg

γ1

2
tg

γ2

2

)
, ξn = ν1 = 1/2;

(ξ2
n − 1/4)Pξn−1/2(− cos γ2)M+(ξn)

∂

∂ξ
Rξn−1/2(cos γ2)

cos(πξn)Pξ−1/2(− cos γ1)
, ξn = νn, n > 1;

(ξ2
n − 1/4)Rξn−1/2(cos γ2)M+(ξn)

∂

∂ξ
Pξn−1/2(− cos γ2)

cos(πξn)Pξn−1/2(− cos γ1)
, ξn = μn, n = 1,∞.
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