Vol. 67
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-05-10
GPU Accelerated Discontinuous Galerkin Time Domain Algorithm for Electromagnetic Problems of Electrically Large Objects
By
Progress In Electromagnetics Research B, Vol. 67, 137-151, 2016
Abstract
In this paper, an efficient time domain simulation algorithm is proposed to analyze the electromagnetic scattering and radiation problems. The algorithm is based on discontinuous Galerkin time domain (DGTD) method and parallelization acceleration technique using the graphics processing units (GPU), which offers the capability for accelerating the computational electromagnetics analyses. The bottlenecks using the GPU DGTD acceleration for electromagnetic analyses are investigated, and potential strategies to alleviate the bottlenecks are proposed. We first discuss the efficient parallelization strategies handling the local-element differentiation, surface integrals, RK time-integration assembly on the GPU platforms, and then, we explore how to implement the DGTD method on the Compute Unified Device Architecture (CUDA). The accuracy and performance of the DGTD method are analyzed through illustrated benchmarks. We demonstrate that the DGTD method is better suitable for GPUs to achieve significant speedup improvement over modern multi-core CPUs.
Citation
Lei Zhao, Geng Chen, and Wenhua Yu, "GPU Accelerated Discontinuous Galerkin Time Domain Algorithm for Electromagnetic Problems of Electrically Large Objects," Progress In Electromagnetics Research B, Vol. 67, 137-151, 2016.
doi:10.2528/PIERB16021802
References

1. Jin, J., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, 2002.

2. Taflove, A. and S. Hagness, Computational Electromagnetics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, 2005.

3. Peterson, A. and R. Mittra, Computational Methods for Electromagnetics, Wiley-IEEE Press, 1997.
doi:10.1109/9780470544303

4. Yu, W., R. Mittra, X. Yang, et al. Parallel Finite Difference Time Domain Method, Artech House, 2006.

5. Yu, W., Y. Rahmat-Samii, and A. Elsherbeni, Advanced Computational Electromagnetic Methods and Applications, Artech House, 2015.

6. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

7. Hesthaven, J. and T. Warburton, Nodal Discontinuous Galerkin Methods, Algorithms, Analysis, and Applications, Springer, 2008.

8. Chen, J. and Q. Liu, "Discontinuous Galerkin time-domain methods for multiscale electromagnetic simulations: A review," Proceeding of The IEEE, Vol. 101, No. 2, 242-254, 2013.
doi:10.1109/JPROC.2012.2219031

9. Jin, J., From FETD to DGTD for Computational Electromagnetics, ACES 2015 Tutorial, March 22-26, 2015.

10. Niegemann, J., Introduction to Computational Electromagnetics The Discontinuous Galerkin Time-Domain (DGTD) Method, Technical Report, Lab for Electromagnetic Fields and Microwave Electronics (IFH), 2012.

11. Busch, K., M. Konig, and J. Niegemann, "Discontinuous Galerkin methods in nanophotonics," Laser Photonics Rev., Vol. 5, No. 6, 773-809, 2011.
doi:10.1002/lpor.201000045

12. Tobon, L. E., Q. Ren, Q. Sun, J. Chen, and Q. H. Liu, "New efficient implicit time integration method for DGTD applied to sequential multidomain and multiscale problems," Progress In Electromagnetics Research, Vol. 151, 1-8, 2015.
doi:10.2528/PIER14112201

13. Yan, S. and J.-M. Jin, "Theoretical formulation of a time-domain finite element method for nonlinear magnetic problems in three dimensions (invited paper)," Progress In Electromagnetics Research, Vol. 153, 33-55, 2015.
doi:10.2528/PIER15091005

14. Shankara, V., A. Mohammadiana, and W. Halla, "A time-domain, finite-volume treatment for the Maxwell equations," Electromagnetics, Vol. 10, No. 1, 127-145, 1990.
doi:10.1080/02726349008908232

15. Karypis, G. and V. Kumar, "Parallel multilevel k-way partition scheme for irregular graphs," SIAM Rev., Vol. 41, No. 2, 278-300, 1999.
doi:10.1137/S0036144598334138

16. Godel, N., N. Nunn, T. Warburton, and M. Clemens, "Scalability of higher-order discontinuous Galerkin FEM computations for solving electromagnetic wave propagation problems on GPU clusters," IEEE. Trans. Magn., Vol. 46, No. 8, 3469-3472, 2010.
doi:10.1109/TMAG.2010.2046022

17. Komatitsch, D., G. Erlebacher, D. Goddeke, and D. Michea, "High-order finite-element seismic wave propagation modeling with MPI large GPU cluster," J. Comput. Phys., Vol. 229, No. 20, 7692-7714, 2010.
doi:10.1016/j.jcp.2010.06.024

18. Komatitsch, D., D. Goddeke, G. Erlebacher, and D. Michea, "Modeling the propagation of elastic waves using spectral elements on a cluster of 192 GPUs," Comput. Sci. Res. Dev., Vol. 25, 75-82, 2010.
doi:10.1007/s00450-010-0109-1

19. Komatitsch, D., D. Michea, and G. Erlebacher, "Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA," J. Parallel Distrib. Comput., Vol. 69, 451-460, 2000.

20. Williamson, J., "Low-storage Runge-Kutta schemes," Journal of Computational Physics, Vol. 35, No. 1, 48-56, 1980.
doi:10.1016/0021-9991(80)90033-9

21. Yang, X. and W. Yu, "PHI coprocessor acceleration techniques for computational electromagnetics methods," ACES Journal, Vol. 29, No. 12, 1013-1016, 2014.

22. Yu, W., X. Yang, and W. Li, VALU, AVX and GPU Acceleration Techniques for Parallel FDTD Methods, SciTech Publishing (An Imprint of the IET), 2014.

23. Shen, J., T. Tang, and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer, 2011.

24. Van Der Vegt, J. and H. van der Ven, "Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. General formulation," Journal of Computational Physics, Vol. 182, No. 2, 546-585, 2002.
doi:10.1006/jcph.2002.7185

25. NVIDIA CUDA Parallel Programming and Computing Platform, http://www.nvidia.com/object/cuda home new.html.

26. NVIDIA, CUDA C Programming Guide, http://docs.nvidia.com/cuda/cuda-c-programming-guide /index.html#axzz3Yh95qkZB, .

27. POINTWISE, http://www.pointwise.com/apps/.

28. https://www.cst.com/.

29. https://www.feko.info/.

30. http://www.ansys.com/Products/Electronics/ANSYS-HFSS.