Vol. 156
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-04-13
Metamaterial Antenna Arrays for Improved Uniformity of Microwave Hyperthermia Treatments
By
Progress In Electromagnetics Research, Vol. 156, 1-12, 2016
Abstract
Current microwave hyperthermia applicators are not well suited for uniform heating of large tissue regions. The objective of this research is to identify an optimal microwave antenna array for clinical use in hyperthermia treatment of cancer. For this aim we present a novel 434 MHz applicator design based on a metamaterial zeroth order mode resonator, which is used to build larger array configurations. These applicators are designed to effectively heat large areas extending deep below the body surface and in this work they are characterized with numerical simulations in ahomogenous muscle tissue model. Their performance is evaluated using three metrics: radiation pattern-based Effective Field Size (EFS), temperature distribution-based Therapeutic Thermal Area (TTA), and Therapeutic Thermal Volume (TTV) reaching 41-45°C. For 2×2 and 2×3 array configurations, the EFS reaching > 25% of maximum SAR in the 3.5 cm deep plane is 100% and 91% of the array aperture area, respectively. The corresponding TTA for these arrays is 95% and 86%, respectively; and the TTV attaining > 41°C is over 85% of the aperture area toa depth of over 3 cm in muscle, using either array configuration. With theoretical heating performance exceeding that of existing applicators, these new metamaterial zero order resonator arrays show promise for future applications in large area superficial hyperthermia.
Citation
David Vrba, Dario Rodrigues, Jan Vrba (Jr.), and Paul R. Stauffer, "Metamaterial Antenna Arrays for Improved Uniformity of Microwave Hyperthermia Treatments," Progress In Electromagnetics Research, Vol. 156, 1-12, 2016.
doi:10.2528/PIER16012702
References

1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach, John Wiley & Sons, 2006.

2. Cihoric, N., A. Tsikkinis, G. van Rhoon, H. Crezee, D. M. Aebersold, S. Bodis, M. Beck, J. Nadobny, V. Budach, P. Wust, and P. Ghadjar, "Hyperthermia-related clinical trials on cancer treatment within the Clinical Trials. gov registry," International Journal of Hyperthermia, Vol. 31, No. 6, 609-614, May 2015.
doi:10.3109/02656736.2015.1040471

3. Dewhirst, M. W., Z. Vujaskovic, E. Jones, and D. Thrallv, "Re-setting the biologic rationale for thermal therapy," International Journal of Hyperthermia, Vol. 21, No. 8, 779-790, Dec. 2005.
doi:10.1080/02656730500271668

4. Sneed, P. K., P. R. Stauffer, G. Li, X. Sun, and R. Myerson, "Hyperthermia," Textbook of Radiation Oncology, 3rd Edition, T. Phillips, R. Hoppe, and M. Roach, eds., 1564-1593, Elsevier Saunders Co, Philadelphia, 2010.

5. Paulides, M. M., P. R. Stauffer, E. Neufeld, P. F. Maccarini, A. Kyriakou, R. A. Canters, C. J. Diederich, J. F. Bakker, and G. C. van Rhoon, "Simulation techniques in hyperthermia treatment planning," International Journal of Hyperthermia, Vol. 29, No. 4, 346-357, Jun. 2013.
doi:10.3109/02656736.2013.790092

6. Veselago, V., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968 (Russian text 1967).
doi:10.1070/PU1968v010n04ABEH003699

7. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental veri cation of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, Apr. 6, 2001.
doi:10.1126/science.1058847

8. Vrba, D. and M. Polivka, "Radiation efficiency improvement of zeroth-order resonator antenna," Radioengineering, Vol. 18, No. 1, 1-8, Apr. 2009.

9. Polivka, M. and D. Vrba, "Shielded micro-coplanar CRLH TL zeroth-order resonator antenna: Critical performance evaluation," Radioengineering, Vol. 18, No. 4, 368-372, Dec. 2009.

10. Wang, G. and Y. Gong, "Metamaterial lens applicator for microwave hyperthermia of breast cancer," International Journal of Hyperthermia, Vol. 25, No. 6, 434-445, 2009.
doi:10.1080/02656730903061609

11. Leggio, L., O. de Varona, and E. Dadrasnia, "Comparison between different schemes of microwave cancer hyperthermia treatment by means of left-handed metamaterial lenses," Progress In Electromagnetics Research, Vol. 150, 73-87, 2015.
doi:10.2528/PIER14101408

12. Vrba, D. and J. Vrba, "Novel applicators for local microwave hyperthermia based on zeroth-order mode resonator metamaterial," International Journal of Antennas and Propagation, Vol. 2014, 1-7, 2014.
doi:10.1155/2014/631398

13. Lee, E. R., T. R. Wilsey, P. Tarczyhornoch, D. S. Kapp, P. Fessenden, A. Lohrbach, and S. D. Prionas, "Body conformable 915MHz microstrip array applicators for large surface-area hyperthermia," IEEE Transactions on Biomedical Engineering, Vol. 39, No. 5, 470-483, May 1992.
doi:10.1109/10.135541

14. Johnson, J. E., D. G. Neuman, P. F. Maccarini, T. Juang, P. R. Stauffer, and P. Turner, "Evaluation of a dual-arm Archimedean spiral array for microwave hyperthermia," International Journal of Hyperthermia, Vol. 22, No. 6, 475-490, Sep. 2006.
doi:10.1080/02656730600905595

15. Rieke, V. and K. B. Pauly, "MR thermometry," Journal of Magnetic Resonance Imaging, Vol. 27, No. 2, 376-390, Feb. 2008.
doi:10.1002/jmri.21265

16. Vrba, D., J. Vrba, and P. Stauffer, "Novel microwave applicators based on zero-order mode resonance for hyperthermia treatment of cancer," Proceedings of the IEEE BenMAS 2014, 107-109, Sep. 2014.

17. Ellison, W. J., "Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0-25 THz and the temperature range 0-100 degrees C," Journal of Physical and Chemical Reference Data, Vol. 36, No. 1, 1-18, Mar. 2007.
doi:10.1063/1.2360986

18. Pennes, H. H., "Analysis of tissue and arterial blood temperatures in the resting human forearm," Journal of Applied Physiology, Vol. 1, 93-122, 1948.

19. Hasgall, P. A., F. Di Gennaro, E. Neufeld, M. C. Gosselin, D. Payne, A. Klingenbock, and N. Kuster, IT'IS Database for thermal and electromagnetic parameters of biological tissues, Version 2.6, Jan. 13, 2015.

20. Van der Gaag, M. L., M. de Bruijne, T. Samaras, J. van der Zee, and G. C. van Rhoon, "Development of a guideline for the water bolus temperature in super cial hyperthermia," International Journal of Hyperthermia, Vol. 22, No. 8, 637-656, Dec. 2006.
doi:10.1080/02656730601074409

21. Stauffer, P. R., P. Maccarini, K. Arunachalam, O. Craciunescu, C. Diederich, T. Juang, F. Rossetto, J. Schlorff, A. Milligan, J.Hsu, P. Sneed, and Z. Vujaskovic, "Conformal microwave array (CMA) applicators for hyperthermia of diffuse chest wall recurrence," International Journal of Hyperthermia, Vol. 26, No. 7, 686-986, Oct. 2010.
doi:10.3109/02656736.2010.501511

22. Sekins, K. M., J. F. Lehmann, P. Esselman, D. Dundore, A. F. Emery, B. J. Delateur, and W. B. Nelp, "Local muscle blood- ow and temperature responses to 915MHz diathermy as simultaneously measured and numerically predicted," Archives of Physical Medicine and Rehabilitation, Vol. 65, No. 1, 1-7, Jan. 1984.

23. Waterman, F. M., R. E. Nerlinger, D. J. Moylan, and D. B. Leeper, "Response of human tumor blood ow to local hyperthermia," International Journal of Radiation Oncology Biology Physics, Vol. 13, No. 1, 75-82, Jan. 1987.
doi:10.1016/0360-3016(87)90263-X