Vol. 59
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-03-09
Research on Minimum Energy Excited to Plasma Coating for Reducing Radar Cross Section of Target
By
Progress In Electromagnetics Research Letters, Vol. 59, 35-42, 2016
Abstract
To reduce the radar cross section (RCS) of a target, plasma coating on perfectly electric conducting plate is studied in this paper. Nonuniform helium plasma produced by a minitype solid rocket engine is with collisional and unmagnetized. Energy excited for generating helium plasma is investigated. Based on the collisional, unmagnetized, and cold plasma model, backscattering RCS is computed by using finite-difference time-domain method. Principle of RCS reduction is explained. To find minimum input energy while RCS reduced, relationship between input power and RCS reduction is discussed, and numerical optimization is also implemented. We can identify optimal parameters and choose the best electron density profile under condition of given input power level.
Citation
Dan Cheng, Hong-Cheng Yin, and Hong-Xing Zheng, "Research on Minimum Energy Excited to Plasma Coating for Reducing Radar Cross Section of Target," Progress In Electromagnetics Research Letters, Vol. 59, 35-42, 2016.
doi:10.2528/PIERL16012503
References

1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Scitech Publ. Inc., 2004.
doi:10.1049/sbra026e

2. Vidmar, R. J., "On the use of atmospheric pressure plasma as electromagnetic reflectors and absorbers," IEEE Trans. on Plasma Science, Vol. 18, No. 4, 733-741, 1990.
doi:10.1109/27.57528

3. Yang, L. X., Y. T. Xie, and P. P. Yu, "Study of bandgap characteristics of 2D magnetoplasma photonic crystal by using M-FDTD method," Microwave and Optical Technology Letters, Vol. 53, No. 8, 1778-1784, 2011.
doi:10.1002/mop.26143

4. Tang, D. L., A. P. Sun, X. M. Qiu, and K. Chu, "Interaction of electromagnetic waves with a magnetized nonuniform plasma slab," IEEE Trans. on Plasma Science, Vol. 31, No. 3, 405-410, 2003.
doi:10.1109/TPS.2003.811648

5. Liu, M., X. Hu, Z. Jiang, S. Zhang, C. Lan, and Y. Pan, "Reflection of a wave from a thin plasma layer attached to a metal plate by finite-difference time-domain analysis," Plasma Sources Sci. Technol., Vol. 16, 614-618, 2007.
doi:10.1088/0963-0252/16/3/022

6. Zobdeh, P., R. Sadighi-Bonabi, H. Afarideh, E. Yazdani, and R. Rezaei Nasirabad, "Using the steepened plasma profile and wave breaking threshold in laser-plasma interaction," Contributions to Plasma Phys., Vol. 48, 555-560, 2008.
doi:10.1002/ctpp.200810088

7. Gurel, C. S. and E. Oncu, "Frequency selective characteristics of a plasma layer with sinusoidally varying electron density profile," Int. J. Infrared Millimeter Waves, Vol. 30, 589-597, 2009.
doi:10.1007/s10762-009-9483-9

8. Chaudhury, B. and S. Chaturvedi, "Study and optimization of plasma-based radar cross section reduction using three-dimensional computations," IEEE Trans. on Plasma Science, Vol. 37, No. 11, 2116-2127, 2009.
doi:10.1109/TPS.2009.2032331

9. Liu, J. F., X. L. Xi, G. B.Wan, and L. L.Wang, "A high efficient SO-FDTD method for magnetized collisional plasma," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1911-1921, 2012.
doi:10.1080/09205071.2012.717352

10. Zeng, X. J., P. Ma, Z. F. Yu, Z. J. Wang, X. Y. Ma, and J. Li, "Experimental investigation and analysis on jet-plasma stealth in air surroundings," Journal of Experiments in Fluid Mechanics, Vol. 22, No. 1, 49-54, 2008 (in Chinese).

11. Heald, M. A. and C. B. Wharton, Plasma Diagnositics with Microwaves, Krieger, 1978.

12. Howatson, A. M., An Introduction to Gas Discharges, Pergamon, 1976.

13. Bakir, O., "Domain decomposition based hybrid methods for solving real-life electromagnetic scattering and radiation problems,", Ph. D. Thesis, University of Michigan, 2012.

14. Itikawa, Y., "Effective collision frequency of electrons in gases," Phys. Fluids, Vol. 16, No. 6, 831-835, 1973.
doi:10.1063/1.1694435