Vol. 68
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-05-10
Design and Simulation of Arbitrarily-Shaped Transformation Optic Devices Using a Simple Finite-Difference Method
By
Progress In Electromagnetics Research B, Vol. 68, 1-16, 2016
Abstract
A fast and simple design methodology for transformation optics (TO) is described for devices having completely arbitrary geometries. An intuitive approach to the design of arbitrary devices is presented which enables possibilities not available through analytical coordinate transformations. Laplace's equation is solved using the finite-difference method to generate the arbitrary spatial transforms. Simple techniques are presented for enforcing boundary conditions and for isolating the solution of Laplace's equation to just the device itself. It is then described how to calculate the permittivity and permeability functions via TO from the numerical spatial transforms. Last, a modification is made to the standard anisotropic finite-difference frequency-domain (AFDFD) method for much faster and more efficient simulations. Several examples are given at the end to benchmark and to demonstrate the versatility of the approach. This work provides the basis for a complete set of tools to design and simulate transformation electromagnetic devices of any shape and size.
Citation
Eric A. Berry, Jesus Gutierrez, and Raymond C. Rumpf, "Design and Simulation of Arbitrarily-Shaped Transformation Optic Devices Using a Simple Finite-Difference Method," Progress In Electromagnetics Research B, Vol. 68, 1-16, 2016.
doi:10.2528/PIERB16012007
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

2. Schurig, D., J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, et al. "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

3. Hu, J., X. Zhou, and G. Hu, "Design method for electromagnetic cloak with arbitrary shapes based on Laplace's equation," Optics Express, Vol. 17, 1308-1320, 2009.
doi:10.1364/OE.17.001308

4. Chang, Z., X. Zhou, J. Hu, and G. Hu, "Design method for quasi-isotropic transformation materials based on inverse Laplace's equation with sliding boundaries," Optics Express, Vol. 18, 6089-6096, 2010.
doi:10.1364/OE.18.006089

5. Rumpf, R. C., C. R. Garcia, E. A. Berry, and J. H. Barton, "Finite-difference frequency-domain algorithm for modeling electromagnetic scattering from general anisotropic objects," Progress In Electromagnetics Research B, Vol. 61, 55-67, 2014.
doi:10.2528/PIERB14071606

6. Landy, N. I. and W. J. Padilla, "Guiding light with conformal transformations," Optics Express, Vol. 17, 14872-14879, 2009.
doi:10.1364/OE.17.014872

7. Ma, J.-J., X.-Y. Cao, K.-M. Yu, and T. Liu, "Determination the material parameters for arbitrary cloak based on Poisson's equation," Progress In Electromagnetics Research M, Vol. 9, 177-184, 2009.
doi:10.2528/PIERM09091405

8. Chen, X., Y. Fu, and N. Yuan, "Invisible cloak design with controlled constitutive parameters and arbitrary shaped boundaries through Helmholtz's equation," Optics Express, Vol. 17, 3581-3586, Mar. 2009.
doi:10.1364/OE.17.003581

9. Rumpf, R. C. and J. Pazos, "Synthesis of spatially variant lattices," Optics Express, Vol. 20, 15263-15274, 2012.
doi:10.1364/OE.20.015263

10. Smith, G. D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford University Press, 1985.

11. LeVeque, R. J., "Finite difference methods for differential equations," Draft Version for Use in AMath, Vol. 585, 1998.

12. Golub, G. H. and C. F. van Loan, Matrix Computations, Vol. 3, JHU Press, 2012.

13. Johnson, H. and C. S. Burrus, "On the structure of e±cient DFT algorithms," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 33, 248-254, 1985.
doi:10.1109/TASSP.1985.1164526

14. Iserles, A., A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, 2009.

15. Chapra, S. C. and R. P. Canale, Numerical Methods for Engineers, Vol. 2, McGraw-Hill, 2012.

16. Arfken, G. and H. Weber, Mathematical Methods for Physicists, 6th Ed., Academic, 2005.

17. Morgan, M. A., Finite Element and Finite Difference Methods in Electromagnetic Scattering, Elsevier, 2013.

18. Luong, P., "A mathematical coastal ocean circulation system with breaking waves and numerical grid generation," Applied Mathematical Modelling, Vol. 21, 633-641, 1997.
doi:10.1016/S0307-904X(97)00076-0

19. Eiseman, P. R., "Grid generation for fluid mechanics computations," Annual Review of Fluid Mechanics, Vol. 17, 487-522, 1985.
doi:10.1146/annurev.fl.17.010185.002415

20. Thompson, J. F., Z. U. Warsi, and C. W. Mastin, Numerical Grid Generation: Foundations and Applications, Vol. 45, North-holland Amsterdam, 1985.

21. Sanmiguel-Rojas, E., J. Ortega-Casanova, C. del Pino, and R. Fernandez-Feria, "A Cartesian grid finite-difference method for 2D incompressible viscous flows in irregular geometries," Journal of Computational Physics, Vol. 204, 302-318, 2005.
doi:10.1016/j.jcp.2004.10.010

22. Akcelik, V., B. Jaramaz, and O. Ghattas, "Nearly orthogonal two-dimensional grid generation with aspect ratio control," Journal of Computational Physics, Vol. 171, 805-821, 2001.
doi:10.1006/jcph.2001.6811

23. Davis, T. A., "Algorithm 832: UMFPACK V4.3 --- An unsymmetric-pattern multifrontal method," ACM Transactions on Mathematical Software (TOMS), Vol. 30, 196-199, 2004.
doi:10.1145/992200.992206

24. Paige, C. C. and M. A. Saunders, "Solution of sparse indefinite systems of linear equations," SIAM Journal on Numerical Analysis, Vol. 12, 617-629, 1975.
doi:10.1137/0712047

25. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.
doi:10.2528/PIERB11092006

26. Schutz, B., A First Course in General Relativity, Cambridge University Press, 2009.
doi:10.1017/CBO9780511984181

27. Hobson, M. P., G. P. Efstathiou, and A. N. Lasenby, General Relativity: An Introduction for Physicists, Cambridge University Press, 2006.
doi:10.1017/CBO9780511790904

28. Liseikin, V., "Coordinate transformations," Grid Generation Methods, 31-66, Springer, Netherlands, 2010.

29. Kwon, D.-H. and D. H. Werner, "Transformation electromagnetics: An overview of the theory and applications," IEEE Antennas and Propagation Magazine, Vol. 52, 24-46, 2010.
doi:10.1109/MAP.2010.5466396