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Design and Simulation of Arbitrarily-Shaped Transformation Optic
Devices Using a Simple Finite-Difference Method

Eric A. Berry, Jesus J. Gutierrez, and Raymond C. Rumpf*

Abstract—A fast and simple design methodology for transformation optics (TO) is described for
devices having completely arbitrary geometries. An intuitive approach to the design of arbitrary devices
is presented which enables possibilities not available through analytical coordinate transformations.
Laplace’s equation is solved using the finite-difference method to generate the arbitrary spatial
transforms. Simple techniques are presented for enforcing boundary conditions and for isolating
the solution of Laplace’s equation to just the device itself. It is then described how to calculate
the permittivity and permeability functions via TO from the numerical spatial transforms. Last, a
modification is made to the standard anisotropic finite-difference frequency-domain (AFDFD) method
for much faster and more efficient simulations. Several examples are given at the end to benchmark and
to demonstrate the versatility of the approach. This work provides the basis for a complete set of tools
to design and simulate TO devices of any shape and size.

1. INTRODUCTION

Transformation optics (TO) is a design methodology that allows electromagnetic fields to be controlled
through spatial transforms [1]. The most well-known example is the cylindrical electromagnetic cloak
described in Ref. [2]. Their device used a closed-form expression for the spatial transform, but closed-
form expressions are highly limited in the range of geometries they can describe. In order to design an
arbitrarily shaped device using TO, a fully numerical method is necessary to perform the coordinate
transformation and to calculate the resulting material properties for the device. This paper presents a
fully numerical technique based on the finite-difference method to generate and simulate arbitrary TO
devices. The arbitrary spatial transforms are generated numerically by solving Laplace’s equation [3, 4].
The devices are confirmed through simulation using an improved anisotropic finite-difference frequency-
domain (AFDFD) method [5] that more efficiently simulates waves in arbitrary anisotropic media.
Several examples are given to demonstrate the simplicity and versatility of our approach. This is the
first known description of a complete numerical tool chain for TO that is based on the finite-difference
method.

Historically, methods such as quasi-conformal mapping [6] and the solution of various partial
differential equations such as Laplace’s equation [3, 4], Poisson’s equation [7], and the Helmholtz
equation [8] have been used to generate the TO material parameters numerically. The approach
presented in Ref. [6] can create arbitrary dielectric waveguides using TO, but does not allow for devices
such as cloaks and lenses to be designed. The techniques described in Refs. [3, 4, 7, 8] use a commercial
finite element software such as COMSOL to simulate a wide assortment of devices using TO, but it is
difficult or impossible to use the calculated materials in a different electromagnetic solver. In contrast,
the approach discussed in this article is designed specifically to be used with custom electromagnetic
methods such as the AFDFD method described in Ref. [5] and will be incorporated into a tool chain
which will generate devices using the geometry generation technique discussed in Ref. [9] to synthesize
spatially variant lattices of metamaterial unit cells.
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2. NUMERICAL GRID GENERATION USING LAPLACE’S EQUATION

The following subsections detail how to generate grids for spatial transforms numerically by solving
Laplace’s equation using finite-differences. The discussion begins by describing the generic solution to
Laplace’s equation using finite-differences. Techniques are presented to enforce the boundary conditions
and to isolate the solution to specific portions of a grid. The discussion ends by showing how to use this
tool to generate the grids associated with the spatial transforms used in TO, but for arbitrarily shaped
objects.

2.1. Finite-Difference Approximation of Laplace’s Equation

Laplace’s equation for the generic function U(x, y, z) is given by

∇2U(x, y, z) = 0. (1)
It can be expanded into Cartesian coordinates according to(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
U (x, y, z) = 0 (2)

By setting the second-order derivatives to zero, Laplace’s equation essentially dictates that the function
U(x, y, z) must vary linearly as a function of position. To numerically solve Eq. (2) using the finite-
difference method, the function U(x, y, z) is stored at discrete points on a grid as illustrated in Figure 1.
This figure shows a small 3D grid and an analogous 2D grid which stores the discretized function Ui,j.
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Figure 1. (a) Three-dimensional grid for U(x, y, z). (b) Two-dimensional grid for U(x, y).

This allows the second-order derivatives in Eq. (2) to be approximated with central finite-differences
as follows.

Ui+1,j,k − 2Ui,j,k + Ui−1,j,k

Δx2
+
Ui,j+1,k − 2Ui,j,k + Ui,j−1,k

Δy2
+
Ui,j,k+1 − 2Ui,j,k + Ui,j,k−1

Δz2
≈ 0 (3)

Equation (3) can be interpreted as enforcing Laplace’s equation on the discrete function Ui,j,k at point
(i, j, k). To enforce Laplace’s equations across the entire grid, Eq. (3) is written once for every point
on the grid. This large set of equations can be written in matrix form as

Lu = 0 (4)
In Eq. (4), the term u contains all of the unknown values of Ui,j,k throughout the entire grid reshaped into
a one-dimensional column vector. The square matrix L operates on u to calculate its scalar Laplacian
∇2. It is a banded matrix where the rows of L are populated using Eq. (3), but an easier and more
powerful approach for constructing L and incorporating boundary conditions is described in the next
subsection. The term 0 is a column vector the same size as u but contains all zeros.
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2.2. Matrix Operator Approach

Given a discrete function Ui,j,k stored in a column vector u, it is always possible to construct a
square matrix L that performs any linear operation on u including derivatives [10, 11], discrete Fourier
transforms [12, 13], convolutions [13], and more. Linearity makes it possible to breakdown complex
linear operations into combinations of simpler linear operations. From Eq. (2), it is possible to express
the Laplacian operation L as the sum of three derivative operations D2

x, D2
y, and D2

z to get Eq. (5).

L = D2
x + D2

y + D2
z (5)

The terms D2
x, D2

y, and D2
z are square banded matrices the same size as L that calculate second-order

derivatives of the function u across the entire grid. These are simpler to construct than L and easier to
verify if they are correct, so it is often advantageous to construct these first and then calculate L from
them using Eq. (5).

As an example, the matrix Laplacian L will be constructed for the two-dimensional 3 × 3 point
grid shown in Figure 1. First, suppose we wish to calculate the second-order derivative of Ui,j in the x
direction. The finite-difference approximation for this can be written as

∂2Ui,j

∂x2
≈ Ui+1,j − 2Ui,j + Ui−1,j

Δx2
. (6)

This equation is written once for every point on the grid and the large set of equations is collected into
a single matrix equation. The matrix equation is expressed as a square matrix operating on the column
vector u. The square matrix derived from this process is the matrix derivative operator D2

x as expressed
in Eq. (7).

D2
xu=

1
Δx2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U2,1 − 2U1,1

U3,1 − 2U2,1 + U1,1

−2U3,1 + U2,1

U2,2 − 2U1,2

U3,2 − 2U2,2 + U1,2

−2U3,2 + U2,2

U2,3 − 2U1,3

U3,3 − 2U2,3 + U1,3

−2U3,3 + U2,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

Δx2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1

1 −2 0
0 −2 1

1 −2 1
1 −2 0

0 −2 1
1 −2 1

1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1,1

U2,1

U3,1

U1,2

U2,2

U3,2

U1,3

U2,3

U3,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(7)
A problem arises when writing Eq. (6) at both the left and right sides of the grid where values of

Ui,j are needed from outside of the grid. The manner in which this is handled is called a numerical
boundary condition [14, 15]. To arrive at Eq. (7), it was assumed that all values of Ui,j were zero
outside of the grid. This is called the Dirichlet boundary condition [16, 17]. Second, the finite-difference
approximation for the second-order derivative of Ui,j in the y direction can be written as

∂2Ui,j

∂y2
≈ Ui,j+1 − 2Ui,j + Ui,j−1

Δy2
. (8)

This equation is also written once for every point on the grid and the large set of equations is collected
into a single matrix equation expressed as a square matrix operating on the column vector u. The
square matrix derived from this process is the matrix derivative operator D2

y as expressed in Eq. (9).

D2
yu=

1
Δy2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1,2 − 2U1,1

U2,2 − 2U2,1

U3,2 − 2U3,1

U1,3 − 2U1,2 + U1,1

U2,3 − 2U2,2 + U2,1

U3,3 − 2U3,2 + U3,1

−2U1,3 + U1,2

−2U2,3 + U2,2

−2U3,3 + U3,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

Δy2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1
−2 1

−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2
1 −2

1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1,1

U2,1

U3,1

U1,2

U2,2

U3,2

U1,3

U2,3

U3,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(9)
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Dirichlet boundary conditions were used again here at the top and bottom boundaries of the grid.
Third, the Laplacian matrix L for two dimensions is calculated by summing the above two derivative
matrices.

L = D2
x + D2

y (10)

2.3. Enforcing Physical Boundary Conditions

At this point, our matrix equation has the form Lu = 0. If this was solved for u only a trivial solution
would be obtained. The matrix equation can be written in a solvable form Lu = b when the physical
boundary conditions are incorporated. To do this, at least some values of Ui,j on the grid must be
known. Each known point is incorporated into the matrix equation by: (1) replacing the entire row in
the matrix equation corresponding to that point with all 0’s, (2) placing a 1 in the diagonal position in
L, and (3) placing the known value of Ui,j into that same row of b.

All of this can be accomplished in a more straightforward manner as follows. First, a force matrix F
is constructed. This is a diagonal matrix with 1’s placed in the positions along diagonal that correspond
to points with known vales of Ui,j. Second, a force function UF,i,j is constructed that contains all of
the known values placed at the correct points on the grid. The force function is reshaped into a one-
dimensional column vector uF called the force vector. It may seem tedious or more complicated to
construct these functions and matrices, but they need to be constructed anyway to describe arbitrary
devices. Given the force matrix F and the force vector uF , the matrix equation incorporating these
physical boundary conditions is

L′u = b (11)

where
L′ = F + (I − F)L (12)
b = FuF (13)

The term I is the identity matrix. A solution to Eq. (11) is calculated as u = L′−1b. An example for a
13 × 13 point grid is provided in Figure 2. At left is the empty grid highlighting the known points, or
physical boundary conditions. At right is the function Ui,j after solving Laplace’s equations with these
boundary conditions. From this, we see that Laplace’s equation provides a way to fill in all the other
values of a function so that they vary linearly in the space between the physical boundary conditions.

Figure 2. Two-dimensional grid to illustrate solution of Laplace’s equation.

2.4. Enclosed Problems

It sometimes occurs that the physical boundary conditions completely enclose a portion of the grid and
the solution to Laplace’s equation is only needed within this enclosed region. It is most numerically



Progress In Electromagnetics Research B, Vol. 68, 2016 5

(a) (b)

Figure 3. (a) Physical boundary conditions enclose a portion of the grid. (b) Solution to Laplace’s
equations obtained only in the enclosed portion of the grid.

(a) (b) (c)

Figure 4. (a) Matrix equation L′u = b for entire grid. (b) Reduced Laplace’s equation. (c)
Repopulated full size column vector u.

efficient to only solve Laplace’s equation within the enclosed region and not outside. This situation
arises when designing devices by TO since the transform is typically contained within the volume of
the device. A simple case of this concept is illustrated in Figure 3 where an arbitrary region of the grid
is enclosed by the physical boundary conditions. The solution to Laplace’s equation fills in the values
inside the enclosed region, but no solution is obtained outside of the enclosed region.

The procedure to reduce Laplace’s equation is simple. All of the points on the grid are identified
where a solution to Laplace’s equation is needed. The rows and columns corresponding to all other
points are dropped from the matrix equation. The reduced matrix equation can be written as

L′′u′′ = b′′. (14)

The concept of reducing the matrix equation is illustrated in Figure 4. To the remaining equations,
the eliminated points have values of zero. However, this has no numerical effect because the unknown
values are completely enclosed by the known points (i.e., physical boundary conditions) and not the
eliminated points. After obtaining a solution to u′′ = L′′−1b′′, the values from u′′ must be inserted into
the correct positions in the full-size column vector u. Values outside of the enclosed region can be set
to anything because they are not of interest. Values of zero are a convenient choice.
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2.5. Numerical Grid Generation

Numerical grid generation is used in fields such as oceanography [18], computational fluid dynamics [19–
21], and conformal mapping in electromagnetics [6]. The approach allows complex geometries to be
handled by mapping an arbitrary grid to a Cartesian grid. The most common approach is based on
solving Laplace’s equation [20, 22] for the transformed coordinates because it generates coordinates that
vary linearly. Given the boundary conditions for an arbitrary coordinate transformation from {x, y, z}
to {x′, y′, z′}, Laplace’s equation can be used to solve for the transformed coordinates using the following
equations.

∇2x′ =
(
∂2

∂2x
+

∂2

∂2y
+

∂2

∂2z

)
x′ = 0 (15)

∇2y′ =
(
∂2

∂2x
+

∂2

∂2y
+

∂2

∂2z

)
y′ = 0 (16)

∇2z′ =
(
∂2

∂2x
+

∂2

∂2y
+

∂2

∂2z

)
z′ = 0 (17)

Occasionally, the backward coordinate transformation is advantageous. Examples of such cases
will be discussed later. In the case where the backward coordinate transformation is favored, Laplace’s
equation can be solved for the backward transformation according to

∇2x =
(
∂2

∂2x′
+

∂2

∂2y′
+

∂2

∂2z′

)
x = 0 (18)

∇2y =
(
∂2

∂2x′
+

∂2

∂2y′
+

∂2

∂2z′

)
y = 0 (19)

∇2z =
(
∂2

∂2x′
+

∂2

∂2y′
+

∂2

∂2z′

)
z = 0. (20)

The solutions of Eqs. (15)–(20) yields only the trivial solution until the boundary conditions are enforced.
Consider the two arbitrary boundaries shown in Figure 5. The boundary conditions along the outer
boundary Γ′

1 and the inner boundary Γ′
2 are given by

U
(
x′, y′

) |Γ′
1(x,y) = U (x, y) |Γ1(x,y) (21)

U
(
x′, y′

) |Γ′
2(x,y) = U (x, y) |Γ2(x,y) (22)

The force matrix and force vector are used to incorporate the boundary conditions into Eqs. (21)
and (22). The force matrix F contains 1’s along the diagonal in the positions that correspond to the
boundaries of the device which have known coordinate values. The force vector uF is a column vector

(a) (b)

Figure 5. Boundary conditions for the coordinate transformation in Eqs. (21) and (22). (a) Original
coordinate system. (b) Transformed coordinate system.
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containing the values of U(x, y) at the boundaries. Given these two terms, the matrix equation can be
put into a solvable form consistent with Eqs. (11)–(13). The matrix equation is further reduced to the
form of Eq. (14) by dropping all rows and columns for points outside of the enclosed region being solved.
This final equation can be solved using any standard algorithm such as an optimized LU decomposition
algorithm for sparse linear systems [23] or an iterative solver such as the conjugate gradient method [24].

As the boundary problem shown in Figure 5 is only defined on the x-y plane, the z coordinate is
not necessary and can be omitted from the Laplace’s equations leaving just the following two equations
to solve.

∇2x′ =
(
∂2

∂x2
+

∂2

∂y2

)
x′ = 0 (23)

∇2y′ =
(
∂2

∂x2
+

∂2

∂y2

)
y′ = 0 (24)

Equations (23) and (24) are approximated with finite-differences and put into matrix form. The
boundary conditions are applied using the force matrix F and two force vector ux,F and uy,F . The force
vectors ux,F and uy,F contain the x coordinates and y coordinates respectively defined by the boundary
conditions. The matrix equation is then reduced by eliminating the rows and columns corresponding
to points outside of the outer boundary. This gives two matrix equations to be solved within the region
being transformed.

L′′x′′ = b′′
x (25)

L′′y′′ = b′′
y (26)

These are solved according to

x′′ = A′′−1b′′
x (27)

y′′ = A′′−1b′′
y . (28)

Figure 6 displays the result of solving the boundary value problem for the coordinate transformation
from {x, y} → {x′, y′}.

(a) (b)

Figure 6. Coordinate transformation boundary value problem shown in Figure 5. (a) Original
Cartesian coordinate system within the transformation boundaries. (b) Transformed coordinate system
determined using the boundaries shown in Figure 5 and defined in Eqs. (21) and (22).

3. CALCULATING THE PERMITTIVITY AND PERMEABILITY FUNCTIONS

The permittivity function [ε′r] and permeability function [μ′r] of the final device are calculated via TO
from the background permittivity tensor [εr], background permeability tensor [μr], and the spatial
transforms discussed above. This reduces to calculating the following two equations at each point on
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the grid [1].

[
ε′r

]
=

Λ [εr]ΛT

detΛ
(29)

[
μ′r

]
=

Λ [μr]Λ
detΛ

(30)

These equations come from a forward coordinate transform so they involve the Jacobian matrix Λ
defined by

Λ =

[ Λxx Λxy Λxz

Λyx Λyy Λyz

Λzx Λzy Λzz

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x′

∂x

∂x′

∂y

∂x′

∂z
∂y′

∂x

∂y′

∂y

∂y′

∂z
∂z′

∂x

∂z′

∂y

∂z′

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

(31)

The elements of the Jacobian matrix can be computed numerically using finite-differences [5, 25] and
stored as arrays as follows.

Λxx (i, j, k) =
∂x′

∂x
∼=
x′i+1,j,k − x′i−1,j,k

2Δx
(32)

Λxy (i, j, k) =
∂x′

∂y
∼=
x′i,j+1,k − x′i,j−1,k

2Δy
(33)

Λxz (i, j, k) =
∂x′

∂z
∼=
x′i,j,k+1 − x′i,j,k−1

2Δz
(34)

Λyx (i, j, k) =
∂y′

∂x
∼=
y′i+1,j,k − y′i−1,j,k

2Δx
(35)

Λyy (i, j, k) =
∂y′

∂y
∼=
y′i,j+1,k − y′i,j−1,k

2Δy
(36)

Λyz (i, j, k) =
∂y′

∂z
∼=
y′i,j,k+1 − y′i,j,k−1

2Δz
(37)

Λzx (i, j, k) =
∂z′

∂x
∼=
z′i+1,j,k − z′i−1,j,k

2Δx
(38)

Λzy (i, j, k) =
∂z′

∂y
∼=
z′i,j+1,k − z′i,j−1,k

2Δy
(39)

Λzz (i, j, k) =
∂z′

∂z
∼=
z′i,j,k+1 − z′i,j,k−1

2Δz
(40)

For two-dimensional devices like this that are uniform in the z-direction, it is only necessary to
calculate four elements of the Jacobian, Λxx, Λxy, Λyx, and Λyy. The elements Λxz, Λyz, Λzx, and Λzy

are arrays of all zeros and Λzz is an array of all ones.
Iterating through the grid point-by-point, the Jacobian matrix at each grid position is assembled

according to Eq. (31) with the derivatives evaluated at each point. Depending on how the coordinate
transformations were determined, it is sometimes necessary to calculate the Jacobian for the backward
coordinate transformation according to

Λ′ =

⎡
⎣ Λ′

xx Λ′
xy Λ′

xz

Λ′
yx Λ′

yy Λ′
yz

Λ′
zx Λ′

zy Λ′
zz

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x

∂x′
∂x

∂y′
∂x

∂z′
∂y

∂x′
∂y

∂y′
∂y

∂z′
∂z

∂x′
∂z

∂y′
∂z

∂z′

⎤
⎥⎥⎥⎥⎥⎥⎦

(41)
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Figure 7. Elements composing the Jacobian matrix for the coordinate transformation shown in
Figure 6.

The calculated derivatives are each stored in an array the same size as the grid as shown in Figure 7.
The forward Jacobian matrix can be found from the backward Jacobian matrix by calculating the

inverse [26–28]. The permittivity tensor is calculated at the point i, j, k within the grid using Eq. (29)
with the Jacobian matrix appropriate to the coordinate transformation. The permittivity tensor can
be written where each element is stored as an array.

[
ε′r (i, j, k)

]
=

⎡
⎣ ε′xx (i, j, k) ε′xy (i, j, k) ε′xz (i, j, k)
ε′yx (i, j, k) ε′yy (i, j, k) ε′yz (i, j, k)
ε′zx (i, j, k) ε′zy (i, j, k) ε′zz (i, j, k)

⎤
⎦ (42)

Likewise, the permeability tensor can be written as

[
μ′r (i, j, k)

]
=

⎡
⎣ μ′xx (i, j, k) μ′xy (i, j, k) μ′xz (i, j, k)
μ′yx (i, j, k) μ′yy (i, j, k) μ′yz (i, j, k)
μ′zx (i, j, k) μ′zy (i, j, k) μ′zz (i, j, k)

⎤
⎦ (43)

4. IMPROVED ANISOTROPIC FINITE-DIFFERENCE FREQUENCY-DOMAIN

Electromagnetic simulation of TO devices can be performed using the AFDFD method, which is
described in detail in Ref. [5]. The key matrix equation to be solved in the conventional AFDFD
is (

Ch [μr]
−1 Ce − [εr]

)
�e = 0. (44)

where Ch and Ce are the curl operator matrices for the magnetic field intensity and electric field
intensity respectively, [μr] is the permeability tensor, and [εr] is the permittivity tensor as described in
detail in Ref. [5]. When simulating devices with magnetically anisotropic materials, the matrix division
involving the permeability tensor is very slow and numerically inefficient. To mitigate this, Eq. (44) is
instead solved using the impermeability matrix [ψ](

Ch [ψ]Ce − [εr]
)
�e = 0 (45)

[ψ] = [μr]
−1 (46)
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To calculate [ψ] most efficiently, the elements are calculated when they are still functions stored in
arrays and not yet diagonal matrices. In this context, we have

[ψ (i, j, k)]=

⎡
⎣ ψxx (i, j, k) ψxy (i, j, k) ψxz (i, j, k)
ψyx (i, j, k) ψyy (i, j, k) ψyz (i, j, k)
ψzx (i, j, k) ψzy (i, j, k) ψzz (i, j, k)

⎤
⎦=

⎡
⎣ μxx (i, j, k) μxy (i, j, k) μxz (i, j, k)
μyx (i, j, k) μyy (i, j, k) μyz (i, j, k)
μzx (i, j, k) μzy (i, j, k) μzz (i, j, k)

⎤
⎦
−1

.

(47)
The elements of [ψ(i, j, k)] are derived from the tensor [μr(i, j, k)] by calculating the matrix inverse
symbolically.

[ψ (i, j, k)] =

[
μyyμzz − μyzμzy μxzμzy − μxyμzz μxyμyz − μxzμyy

μyzμzx − μyxμzz μxxμzz − μxzμzx μxzμyx − μxxμyz

μyxμzy − μyyμzx μxyμzx − μxxμzy μxxμyy − μxyμyx

]

μxxμyyμzz − μxxμyzμzy − μxzμyyμzx − μxyμyxμzz + μxyμyzμzx + μxzμyxμzy
(48)

For brevity, the dependence on the array indices i, j, and k have been dropped from these equations.
All of these calculations are performed point-by-point on arrays instead of with matrices. After the
elements of [ψ(i, j, k)] are calculated, they are reshaped into diagonal matrices and assembled into the
overall impermeability matrix as follows.

[ψ] =

[
ψxx ψxy ψxz

ψyx ψyy ψyz

ψzx ψzy ψzz

]
(49)

where ψmn = diag{ψmn(i, j, k)}.
Using the impermeability tensor rather than the permeability tensor to solve the wave equation in

Eq. (45) decreased the time required to solve a two dimensional AFDFD simulation for a flat TO lens
on a 90×77 cell grid from 727.18 seconds to 8.33 seconds. Also the amount of memory required to solve
AFDFD using the impermeability tensor was drastically reduced compared to the conventional AFDFD
algorithm using the permeability tensor. The simulation with the impermeability tensor required
105.7 MB to be allocated whereas the simulation with the permeability tensor required 6.962 GB to
be allocated.

5. BENCHMARK AND EXAMPLES

5.1. Cylindrical Electromagnetic Cloak

To benchmark our approach, we duplicated the famous cylindrical electromagnetic cloak presented in
Ref. [2]. This was based on the closed form coordinate transformation given by

r′ = R1 + r
R2 −R1

R2

θ′ = θ

z′ = z

(50)

where the cloak has an inner radius R1 and outer radius R2. Figure 8 shows the outlines of the
boundaries of the coordinate transformation given by Eq. (50).

In order to calculate the coordinate transformation numerically, the following boundary conditions
were applied

Γ′
2

(
x′, y′

)
= Γ2 (x, y) (51)

Γ′
1

(
x′, y′

)
= 0 (52)

Given Eq. (50), the transformation from {x, y, z} → {x′, y′, z′} experienced a strong singularity in
the cloaked region. This was overcome by calculating the backward rather than the forward coordinate
transformation. The material tensors were calculated by following the approach described previously.
The resulting permittivity tensor is shown in Figure 10. For a cylindrical cloak in free space, the
permeability tensor is identical to the permittivity tensor.
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Figure 8. Coordinate transformation boundary
conditions for a cylindrical cloak.

Figure 9. AFDFD simulation of cylindrical
electromagnetic cloak.

Figure 10. Permittivity tensor for cylindrical electromagnetic cloak. The permeability tensor is
identical for a cloak based in free space. All tensor components which are not visualized are equal to
one for the elements along the diagonal and zeros for the off-diagonal elements. The values determined
for this cloak are based on a grid resolution of λ0/120. As the grid resolution is made smaller, the values
of the materials required would approach infinity or zero due the cloaked region being a singularity.

The device was simulated using the improved AFDFD. Dirichlet boundary conditions were used
for the y-axis boundaries while a uniaxial perfectly matched layer (UPML) was used for the x-axis
boundaries. The result is shown in Figure 9.

5.2. Flat Lens

Figure 11 shows the boundary conditions necessary to design a flat lens using TO as described in
Ref. [29]. By solving Laplace’s equation for the boundaries

Γ1 → Γ′
1

Γ2 → Γ′
2

Γ3 → Γ′
3

Γ4 → Γ′
4

(53)
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(a) (b)

Figure 11. Coordinate transformation for
transformation optics bend. (a) is the original
coordinate space while that (b) is the transformed
space.

Figure 12. AFDFD simulation of flat TO lens.

Figure 13. Permittivity tensors for flat transformation optics lens. The permeability tensor is identical
for a bend based in free space. All tensor components which are not visualized are zero throughout the
grid. The material values for this lens are for a grid resolution of λ0/120.

the coordinate transformation was computed numerically.
With the coordinates in the new system known, the Jacobian matrix was calculated using Eq. (31)

and the material tensors determined using Eqs. (29) and (30). The resulting permittivity is shown in
Figure 13. The permeability is identical to the permittivity in this situation because the original space
is vacuum.

Using AFDFD, the material tensors were placed within a grid surrounded by a UPML and a
cylindrical source was used. Aside from diffraction around the edges, the electric field in Figure 12 can
be seen to be converted to a plane wave as would be expected from a conventional lens.
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5.3. Arbitrary Cloak

This section will demonstrate the method implemented above with the arbitrary metamaterial cloak
shown in Figure 14. The pickaxe shape bounded by Γ′

1 is being cloaked by the region bounded by Γ′
2.

In order to cloak the object, a coordinate system in which the axes wrap around the object without
penetrating the object itself must be implemented within the region between the two boundaries. In
order to avoid singular Jacobian matrices in the cloaked region, the backward coordinate transformation
was implemented rather than the forward transformation. The boundary conditions, which were derived
from those described in Ref. [3], are given as follows.

Γ′
2

(
x′, y′

)
= Γ2 (x, y) (54)

Γ′
1

(
x′, y′

)
= 0 (55)

Following the procedure described in the previous sections of this paper the material tensors were
calculated. The resulting permittivity tensor is shown in Figure 16 with the permeability tensor being
the same.

Figure 14. Outline of arbitrary electromagnetic
cloak and object to be cloaked.

Figure 15. AFDFD simulation of arbitrary
electromagnetic cloak.

Figure 16. Permittivity tensor for arbitrary electromagnetic cloak. The permeability tensor is identical
for a cloak based in free space. All tensor components which are not visualized are equal to one for the
elements along the diagonal and zeros for the off-diagonal elements.
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Using AFDFD, the TO cloak was simulated for a TM polarized wave as shown in Figure 15. The
material tensors for the cloak were placed between a UPML on the x-axis boundaries and Dirichlet
boundary conditions on the y-axis boundaries. As can be seen, very little power is scattered and the
phase of the wave is very well preserved.

5.4. Transformation Optics Bend

Creating a bend using numerical TO involves solving Laplace’s equation for the boundary value problem
shown in Figure 17. Rather than transform from {x, y} to {x′, y′}, the backward transformation was
chosen because mapping the arbitrarily distorted boundaries shown on the right in Figure 17 to the
boundaries of the original system could be done with simple analytical expressions. Solving Laplace’s

(a) (b)

Figure 17. Coordinate transformation for
transformation optics bend. (a) is the original
coordinate space while that (b) is the transformed
space.

Figure 18. AFDFD simulation of TO electro-
magnetic bend.

Figure 19. Permittivity tensors for arbitrary electromagnetic bend. The permeability tensor is identical
for a bend based in free space. All tensor components which are not visualized are zero throughout the
grid.
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equation with the boundary values

Γ′
1 → Γ1

Γ′
2 → Γ2

Γ′
3 → Γ3

Γ′
4 → Γ4

(56)

provides the coordinates of the backward coordinate transformation.
Using the procedure described above, the material tensors were calculated as shown in Figure 19

and placed in a grid surrounded by a UPML. This was simulated using AFDFD and the result is shown
in Figure 18.

6. CONCLUSIONS

A simple technique for generating and simulating TO devices with arbitrary geometry was described
in this article. Laplace’s equation was used to generate the coordinates of the spatial transforms. The
method described uses a finite-difference approach so it is simple and straightforward to implement.
Other approaches in the literature used commercial software such as COMSOL, making it difficult
or impossible to import and export complex data. The technique described in this paper can be
implemented independent of a commercial solver and in virtually any programming environment. This
allows much greater flexibility in manipulating the data and importing the generated materials into
custom electromagnetic solvers such as finite-difference time-domain, finite-difference frequency-domain,
beam propagation method, and more. Further, an improvement to the standard AFDFD method was
outlined that greatly improves the speed and efficiency for simulating TO devices. The new approach
utilized the impermeability tensor instead of the permeability tensor in the matrix wave equation.

Several examples were presented to benchmark the approach and demonstrate its versatility. The
devices included the classical cylindrical cloak, an arbitrarily shaped cloak, a flat lens, and an arbitrarily
shaped bend. Devices with arbitrary shapes were verified through simulation using the improved
AFDFD. The simulation results showed excellent performance of the devices.
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