Vol. 47
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-03-25
A Novel Smoothing Scheme of Temporal Basis Function Independent Method in MOT Based TDIE
By
Progress In Electromagnetics Research M, Vol. 47, 57-65, 2016
Abstract
In this paper, a novel numerical temporal convolution method is presented to calculate the convolutions between the retarded-time potentials and temporal basis functions (or its integration, derivation) in marching-on-in-time (MOT) solver. This approach can smooth and eliminate the singularity of integrated functions by variable substitution. It can also effectively control the precision of numerical quadratures over the surface of the source distribution. Thus it is suitable for more types of temporal basis functions including non-piecewise polynomial functions. Numerical results demonstrates that this improved method can ensure the accuracy and late time stability of the MOT solver with different types of temporal basis functions.
Citation
Miao Miao Jia, Yan-Wen Zhao, Yu Teng Zheng, and Qiang-Ming Cai, "A Novel Smoothing Scheme of Temporal Basis Function Independent Method in MOT Based TDIE," Progress In Electromagnetics Research M, Vol. 47, 57-65, 2016.
doi:10.2528/PIERM16011703
References

1. Shanker, B., A. A. Ergin, et al. "Analysis of transient electromagnetic scattering from closed surfaces using the combined field integral equation," IEEE Trans. Antennas and Propag., Vol. 48, No. 7, 1064-1074, 2000.
doi:10.1109/8.876325

2. Davies, P. J. and D. B. Duncan, "Averaging techniques for time-marching schemes for retarded potential integral equations," Appl. Numer. Math., Vol. 23, No. 3, 291-310, 1997.
doi:10.1016/S0168-9274(96)00069-4

3. Vechinski, D. and S.M. Rao, "A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas and Propag., Vol. 40, No. 6, 661-665, 1992.
doi:10.1109/8.144600

4. Davies, P. J. and D. B. Duncan, "Averaging techniques for time-marching schemes for retarded potential integral equations," Appl. Numer. Math., Vol. 23, No. 3, 291-310, 1997.
doi:10.1016/S0168-9274(96)00069-4

5. Dodson, S. J., S. P. Walker, and M. J. Bluck, "Implicit and stability of time domain integral equation scattering analysis," Applied Computational Electromagnetic Society Journal, Vol. 13, 291-301, 1997.

6. Weile, D. S., G. Pisharody, and N. W. Chen, "A novel scheme for the solution of the time-domain integral equations of electromagnetic," IEEE Trans. Antennas and Propag., Vol. 52, No. 1, 283-295, 2004.
doi:10.1109/TAP.2003.822450

7. Wang, P., M. Y. Xia, J. M. Jin, and L. Z. Zhou, "Time-domain integral equation solvers using quadratic B-spline temporal basis functions," Microw. Opt. Technol. Lett., Vol. 49, No. 5, 1154-1159, 2007.
doi:10.1002/mop.22385

8. Beghein, Y., K. Cools, H. Bagci, and D. De Zutter, "A space-time mixed galerkin marching on in time scheme for the time-domain combined field integral equation," IEEE Trans. Antennas and Propag., Vol. 61, No. 3, 1228-1238, 2013.
doi:10.1109/TAP.2012.2226553

9. Wildman, R. A., G. Pisharody, Weile, S. Daniel, S. Balasubramaniam, and E. Michielssen, "An accurate scheme for the solution of the time-domain Integral equations of electromagnets using higher order vector bases and bandlimited extrapolation," IEEE Trans. Antennas and Propag., Vol. 52, No. 11, 2973-2984, 2004.
doi:10.1109/TAP.2004.835141

10. Bin Sayed, S., H. A. Ulku, and H. Bagci, "A stable marching on-in-time scheme for solving the time-domain electric field volume integral equation on high-contrast scatterers," IEEE Trans. Antennas and Propag., Vol. 63, No. 7, 3098-3110, 2015.
doi:10.1109/TAP.2015.2429736

11. Shi, Y. F., M. Y. Xia, R. S. Chen, E. Michielssen, and M. Y. Lu, "Stable electric field TDIE solvers via quasi-exact evaluation of MOT matrix elements," IEEE Trans. Antennas and Propag., Vol. 59, No. 2, 574-585, 2011.
doi:10.1109/TAP.2010.2096402

12. Pingenot, J., S. Chakraborty, and V. Jandhyala, "Polar integration for exact space-time quadrature in time-domain integral equations," IEEE Trans. Antennas and Propag., Vol. 54, No. 10, 3037-3042, 2006.
doi:10.1109/TAP.2006.882195

13. Shanker, B., M. Lu, and E. Michielssen, "Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields," IEEE Trans. Antennas and Propag., Vol. 57, No. 5, 1506-1520, 2009.
doi:10.1109/TAP.2009.2016700

14. Pray, A. J., N. V. Nair, and B. Shanker, "Stability properties of the time domain electric field integral equation using a separable approximation for the convolution with the retarded potential," IEEE Trans. Antennas and Propag., Vol. 60, No. 8, 3772-3781, 2012.
doi:10.1109/TAP.2012.2201101

15. Ulku, H. A., H. Bagci, and E. Michielssen, "Marching on-in-time solution of the time domain magnetic field integral equation using a predictor-corrector scheme," IEEE Trans. Antennas and Propag., Vol. 61, No. 8, 4120-4131, 2013.
doi:10.1109/TAP.2013.2262016

16. Yücel, A. C. and A. A. Ergin, "Exact evaluation of retarded-time potential integrals for the RWG bases," IEEE Trans. Antennas and Propag., Vol. 54, No. 5, 1496-1502, 2006.
doi:10.1109/TAP.2006.874327

17. Ülkü, H. A. and A. A. Ergin, "Analytical evaluation of transient magnetic fields due to RWG current bases," IEEE Trans. Antennas and Propag., Vol. 55, No. 12, 3565-3575, 2007.
doi:10.1109/TAP.2007.910366

18. Ülkü, H. A., A. A. Ergin, and T. Van, "On the singularity of the closed-form expression of the magnetic field in time domain," IEEE Trans. Antennas and Propag., Vol. 59, No. 2, 691-694, 2011.
doi:10.1109/TAP.2010.2096393

19. Ülkü, H. A. and A. A. Ergin, "Application of analytical retarded time potential expressions to the solution of time domain integral equation," IEEE Trans. Antennas and Propag., Vol. 59, No. 11, 691-694, 2011.
doi:10.1109/TAP.2010.2096393

20. Hu, J. L., C. H. Chan, and Y. Xu, "A new temporal basis function for the time-domain integral equation method," IEEE Microw. Wireless Components Lett., Vol. 11, 465-466, 2001.
doi:10.1109/7260.966043

21. Ma, J., V. Rokhlin, and S. Wandzura, "Generalized Gaussian quadrature rules for systems of arbitrary functions," SIAM Journal on Numerical Analysis, Vol. 33, No. 3, 971-996, 1996.
doi:10.1137/0733048

22. Zhu, M. D., X. L. Zhou, and W. Y. Yin, "Radial integration scheme for handling weakly Singular and near-singular potential integrals," IEEE Antennas and Wireless Propag. Letters, Vol. 10, No. 1, 792-795, 2011.

23. Scuderi, L., "On the computation of nearly singular integrals in 3D BEM collocation," International Journal for Numerical Methods in Engineering, Vol. 74, 1733-1770, 2000.