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A Novel Smoothing Scheme of Temporal Basis Function Independent
Method in MOT Based TDIE

Miao Miao Jia*, Yan Wen Zhao, Yu Teng Zheng, and Qiang Ming Cai

Abstract—In this paper, a novel numerical temporal convolution method is presented to calculate the
convolutions between the retarded-time potentials and temporal basis functions (or its integration,
derivation) in marching-on-in-time (MOT) solver. This approach can smooth and eliminate the
singularity of integrated functions by variable substitution. It can also effectively control the precision
of numerical quadratures over the surface of the source distribution. Thus it is suitable for more types of
temporal basis functions, including non-piecewise polynomial functions. Numerical results demonstrate
that this improved method can ensure the accuracy and late time stability of the MOT solver with
different types of temporal basis functions.

1. INTRODUCTION

Time domain integral equation (TDIE) formulations have prevalent usage for analyzing broadband
surface scattering phenomena, and the marching-on-in-time (MOT) method is a powerful tool for solving
TDIE. However, the stability and accuracy of the MOT scheme are still challenging problems [1]. Many
scholars have done many works in recent years and made very significant progress. Averaging/filtering
scheme based on explicit MOT is considered to reduce the impact of the high frequency component on
the late time stability [2–4]. However, these methods reduce the accuracy, increase the computation
complexity and are invalid for large-scale and complex geometric structures. Later, implicit time
stepping algorithms and appropriate smooth temporal basis functions are also proposed to overcome
the above mentioned drawbacks [5–10]. Recent studies show that accuracy computation of the MOT
impedance matrix is considered as a cure factor, effecting the late time stability and accuracy of the
MOT solver [11–15].

On the other hand, a developed approach was proposed as shown in [16–19], which was different
from the traditional MOT method. The spatial basis integral was performed first, and then the
temporal convolution was evaluated, while the conventional MOT method was implemented in the
reverse sequence. Firstly, exact closed-form expressions of the electric and magnetic fields and potentials
due to impulsively excited Rao Wilton Glisson (RWG) basis functions have been presented in [19].
Secondly, analytical convolutions between some simple piece-wise polynomial’s temporal basis functions
T (t) (or its derivation or integration) and retarded potentials (or its curl) have also been evaluated.
However, the analytical integrals are heavily dependent on the expressions of T (t). If some widely-used
piecewise polynomials are used in modeling the temporal behavior of current, the convolution integrals
can be calculated in a closed form. While the order of the polynomials is higher, the analytical expression
is more complex, and more computing amounts are needed. Besides, if a non piece-wise polynomial
temporal basis function is adopted [6, 20], the analytical result will be more complex or even cannot be
derived. Thus a numerical convolution method is necessary. Since there still exist singularity in the
integrated functions, the convergence will be poor using direct Gauss integrals [21].
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To overcome the above drawbacks, a developed numerical convolution method is firstly applied to
evaluate the convolutions. This proposed technique can eliminate the singularity (or smooth) of the
integrated functions by introducing the idea of variable substitution [22, 23]. It is applicable to more
types of T (t) compared with the analytical convolution method [19]. Similarly, this idea has also been
applied to solve the weakly and near singular problems existing in potential integrals for the frequency
method [22].

This paper is organized as follows. Section 2 presents the formulation of MOT based time domain
integral equation of PEC. Section 3 presents the evaluation of the improved temporal convolution
method. Section 4 shows the numerical results that demonstrate the accuracy and stability of the
proposed scheme. Section 5 presents conclusions.

2. FORMULATION OF MOT BASED TIME DOMAIN INTEGRAL EQUATION OF
PEC

Suppose that S is the surface of the perfect electric conductor (PEC), the incident field Einc(r, t) or
Hinc(r, t) will generate induced current Js(r, t) on the S and consequently generate the scattering field
Esca(r, t) or Hsca(r, t). According to the boundary conditions of electric and magnetic fields,

n̂× n̂× [∂tA(r, t) +∇Φ(r, t)] = n̂× n̂×Einc(r, t) (1)

J(r, t)− n̂×∇×A(r, t) = n̂×Hinc(r, t) (2)

where n̂ denotes the unit normal vector of field patch; A(r, t) and Φ(r, t) are the vector and scalar
potentials; ∂t denotes the time derivation; Einc(r, t) and Hinc(r, t) denote the incident electric and
magnetic fields, respectively.

In the MOT method, the unknown surface current density J(r, t) can be expanded as,

J(r, t) =

Ns∑
n=1

Nt∑
l=1

I ln [Tl(t)fn(r)] (3)

where I ln are the unknown coefficients related to spatial basis functions fn and temporal basis functions
Tl(t) = T (t − lΔt)(l = 0, 1, 2, . . .) (Δt denotes time step). Then using the point match at t = kΔt in
time domain, and adopting Galerkin methods in spatial domain, finally the time domain combined field
integral equations (TDCFIE) can be divided into matrix equation,

Mc
0 · Ik = Vinc,c

k −
k−1∑
l=1

Mc
l · Ik−l (4)

where

Mc
l = αcM

e
l + (1− αc)ηM

h
l (5)

Vinc,c
k = αcV

inc,e
k + (1− αc)ηV

inc,h
k (6)

where αc denotes the weight coefficient of TDCFIE in time domain; α = 1 and αc = 0 denote TDEFIE

and TDMFIE, respectively; Vinc,c
k denotes the incident term caused by both Einc(r, t) and Hinc(r, t);

η is the wave impedance in free space; Me
l , M

h
l and Mc

l denote the matrix of TDEFIE, TDMFIE and
TDCFIE, respectively. Their entries are,

M e
l (m,n) =

∫
Sm

dSfm(r) · [∂tT (lΔt) ∗An(r, t)]+

∫
Sm

dS∇ · fm(r)
[
∂−1
t T (lΔt) ∗ φn(r, t)

]
, l = 0, 1, . . . (7)

Mh
l (m,n) =

T (lΔt)

2

∫
Sm

dSmfm(r) · fn(r)−
∫
Sm

dSmfm(r) · n̂f × [T (lΔt) ∗Hn(r, t)] , l = 0, 1, . . . (8)

where fm(r) is the mth spatial testing function; n̂f is the normal unit vector of observation patch

Sm; ∂t and ∂−1
t denote the derivative and integral of t, respectively; An(r, t) = A+

n (r, t) + A−
n (r, t),

φn(r, t) = φ+
n (r, t) + φ−

n (r, t) and Hn(r, t) = H+
n (r, t) + H−

n (r, t) are the magnetic vector potential,
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electric scalar potential and magnetic field due to impulsively excited nth basis function. The detailed
expressions are as follows,

A±
n (r, t) =

μ

4π

∫
S±
n

dS′fn(r′)
δ(t−R/c)

R
= ± cln

2S±
n
[e±(r, t) + (ρ− ρ±n )α

±(r, t)] (9)

φ±
n (r, t) =

∫
S±
n

dS′∇′ · fn(r′)δ(t−R/c)

R
= ± cln

S±
n
α(r, t) (10)

Hn
±(r, t) =

∫
S±
n

dS′∇×
[
fn(r

′)
δ(t−R/c)

R

]
= ± cln

8πS±
n
n̂× (ρ− ρ±n )

1

R

∂α(r, t)

∂R
|R=ct

∓ cln

8πS±
n

[
(ρ− ρ±n ) + dn̂

]× 1

R

∂e(r, t)

∂R
|R=ct (11)

Here S±
n denotes the area of the source patch, c the velocity of the light in free space, ln the length

of the common edge of the nth basis function, and d the distance between the field point and the
source triangle patch. It should be noted that all the related vectors are defined in the Cartesian local
coordinate system, as shown in Fig. 1. α(r, t) and e(r, t) denote the arc length and bisecting vector of
the arc formed by the intersection of the sphere and Sn, respectively. The closed-form expressions of
α(r, t) and e(r, t) have been derived in details [17, 19].
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Figure 1. Cartesian local coordinate system and the related vector definition.

To complete the whole MOT solver, temporal convolutions between the potentials and the temporal
basis functions have to be performed as indicated in Eqs. (7) and (8). However, it must be emphasized
that the discontinuities in α(r, t) are very important and determinative for the singular behavior existing
in Eqs. (9), (10) [16]. Similarly, the un-smooth property still exists in ∂Rα(r, t) or ∂Re(r, t) in Eq. (11),
which has singularity at tangent points [17]. Thus the direct numerical integration method is invalid
in calculating the convolutions in Eqs. (7) and (8) due to its poor convergence. And a new smoothing
scheme is required so as to guarantee fast convergence. In the next part, variable substitution is applied
to eliminate the singularity or smooth the integrand of convolutions.

3. EVALUATION OF THE IMPROVED TEMPORAL CONVOLUTION METHOD

According to the analytical expressions of α(r, t) and e(r, t) [19], the convolutions of any temporal
function with An(r, t), φn(r, t) and Hn(r, t) can be changed into calculating the convolutions between
F (t) and T (t), namely, the temporal behavior of the impulsively excited electric field in EFIE or MFIE
depends on those functions F (t), given as shown in Table 1.

For better demonstration, F̃ (t) = F (t) ∗ T (t) is used to denote the convolution between the
temporal basis T (t) and F (t). And one case of F (t) is depicted to illustrate how the improved numerical
convolutions work,

F (t) = 1/
√

(ct)2 − d2 (12)
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Table 1. The expression of F (t) used in TDEFIE and TDMFIE (ς =
√
c2t2 − d2).

EFIE 1 ς
√

ς2 − a2i cos−1(ai/ς)

MFIE 1/ς
√
ς2 − a2i /ς

2 1/ς2
√

ς2 − a2i \

And the corresponding convolution is

F̃ (t) =

τmax∫
τmin

[√
(cτ)2 − d2

]−1

T (t− τ)dτ (13)

where τmin (τmax) are the min (max) value of the radial integration interval, respectively. Here d is the
distance of the observation point to the source path. Further, by making x = cτ , we have

F̃ (t) =
1

c

xmax∫
xmin

[√
x2 − d2

]−1
T (t− x/c)dx (14)

It is easy to find that the integrated function does not continue when x = d, and the integrated function
becomes large in their vicinity, thus reducing the accuracy and convergence of the numerical computation
of the integral. we need to tackle the endpoint singularity of F̃ (t) if the lower limit of the segmented
integration is xmin = d. A considerable improvement of the behavior of the integrand function in the
interval of integration is proposed by variable transformation,

x = d+ yq, y = (x− d)1/q (15)

where q is a positive integer, and the integration variable is changed from x into y. Finally, we have

F̃ (t) =

(xmax−d)1/q∫
0

q
[√

y2q + 2dyq
]−1

T (t− (d+ yq)/c)yq−1dy (16)

Therefore, the above mentioned singularity has been eliminated after variable substitution with
the application of smoothing technique in Eq. (14) by changing the integration variable from x into y.
Similarly, the same idea can be applied into solving all the other convolution integrals.

Taking the 1st order temporal basis function T (t) = at + b for example and then putting it into
Eq. (12), we have

F̃ (t) =

τmax∫
d/c

a(t− τ) + b√
(cτ)2 − d2

dτ (17)

where τmax is a constant bigger than d/c, and the related analytical and improved numerical expressions

F̃A(t) and F̃N (t) are as follows,

F̃A(t) =
at+ b

c
ln

(
cτ +

√
(cτ)2 − d2

)
− a

c2

√
(cτ)2 − d2|τmax

d/c (18)

F̃N (t) =
q

c

ymax∫
0

yq−1−a
c y

q + (at+ b− ad
c )√

yq(yq + 2d)
dy (19)

where ymax = (cτmax − d)1/q . In order to estimate the precision of our proposed numerical method,

Er(t) is adopted to denote the relative error between F̃N (t) and F̃A(t),

Er(t) =
F̃N (t)− F̃A(t)

F̃A(t)
(20)
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If we choose a = b = 1/Δt, d = 1 and Δt = 0.5 ns. F̃ (t) is calculated by traditional Gauss
Legendre quadrature formula, analytical method and the proposed numerical method based on variable
substitution, respectively. The relative error Er(t) with different q is shown in Fig. 2. The value of q
can be confirmed by the requirement of calculating precision. When q = 2, the relative error (less than
10−6) is the smallest among all results with q changing from 1 to 6. On the other hand, the results will
not converge if using the direct Gauss Legendre quadrature method.

4. NUMERICAL RESULTS

Let’s consider the PEC scatterers in the free space illuminated by the modulated plane-wave Gaussian
pulse,

Einc(r, t) = p̂E0 cos
[
2πf0

(
t− r · k̂

/
c
)]

e
−(t−tp−r·k̂/c)2

/
(2σ2)

(21)

where E0 and f0 are the amplitude and center frequency of the incident wave. The temporal standard
derivation σ = 7/2πfbw. fbw is the pulse width, and the delay relative to the origin is tp = 8σ.

k̂ = −ez denotes the propagation direction of the incident wave, and p̂ = ex denotes its polarization.
Hinc(r, t) = k̂ × Einc(r, t). In this paper, four different types of T (t) (1st and 2nd order Lagrange
polynomials, sine, and exponential temporal basis functions) are adopted to examine and verify the
accuracy and validity of the proposed method. q = 2 is chosen to guarantee the interpolation precision.
Double-precision calculation and LU decomposition are also used in order to reduce the error of
numerical truncation.

4.1. Analysis the Accuracy of This Numerical Time Convolution Method

In order to verify the accuracy and efficiency of the numerical temporal convolutions, the action between
one field point and one source triangle path is given here. Three vertex coordinates of the source triangle
Sn are (−5.20, 6.14, 6.03), (−8.61, 5.36, 12.17) and (1.0, 1.732, 0.0), respectively. The field coordinate r

is (0.5, 2.0, 0.001) and time step Δt = 0.25 ns. S̃1
e (r, t), Ṽ

1
e,u(r, t) and Ṽ 0

h,u(r, t) denote the convolutions

between α(r, t) (e(r, t) or their derivation respect to R) and 1st temporal basis function (its derivation
or integration respective to t), as shown at the bottom of Table 2. The detailed expression in the first

Table 2. The root mean square error between our proposed method and the analytical convolution
method (×10−6).

Δt

(ns)

Gauss

Node number

S̃1
e

(r, t)

S̃−1
e

(r, t)

Ṽ1
e,u

(r, t)

S̃0
h

(r, t)

Ṽ0
h,u

(r, t)

1.0 3 0.271 3.621 1.306 0.345 0.250

1.0 5 1.748 2.927 0.969 0.171 0.270

1.0 7 1.173 8.185 0.636 0.302 0.313

0.5 3 2.511 4.743 1.814 0.321 0.549

0.5 5 1.860 3.061 0.980 0.378 0.370

0.5 7 1.462 1.327 1.050 0.328 0.380

0.25 3 1.889 6.117 1.605 0.596 1.067

0.25 5 1.985 3.861 1.093 0.481 0.604

0.25 7 1.758 5.534 1.115 0.480 0.604
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line of Table 2 is as follows,

S̃1
e (r, t) = α(r, t) ∗ ∂tT (t) (22)

S̃−1
e (r, t) = α(r, t) ∗ ∂−1

t T (t) (23)

Ṽ1
e,u(r, t) = e(r, t) ∗ T (t) (24)

Ṽ1
h,u = −∂Re(r, t)/R ∗ ∂tT (t) (25)

S̃1
h = −∂Rα(r, t)/R ∗ ∂tT (t) (26)

For a better description, f(t) is used to denote the above four convolutions uniformly. The root mean
square error (RMS) between fN(t) (using our proposed method) and fA(t) (using analytical convolution
method) is defined as

RMS =

n=L2∑
n=L1

[f̃N (nΔt)− f̃A(nΔt)]
2

L2 − L1 + 1
(27)

Here t is changing from t1 = L1Δt to t2 = L2Δt. L1 and L2 denote the L1th and L2th time steps,
respectively. As shown in Table 2, the RMS is always less than 10−5 with different time steps and
Gaussian integral nodes for both the convolutions used in TDEFIE and TDMFIE formulations.

4.2. Analysis Late-Time Stability and Accuracy of the MOT Algorithm with Different
Temporal Basis Function

In this example, a PEC sphere with radius 0.5m is considered. Its meshes include 458 planar
triangular patches and 687 inner edges. The sphere is illuminated by a modulated Gaussian pulse
with f0 = 200MHz and fbw = 80MHz. Fig. 3 shows a plot of current density amplitudes obtained from
the proposed technique with four different temporal basis (TB) functions (as shown in Table 3) at the
point (0, 0,−1m). Here the time step Δt is equal to 0.36 ns. Three Gauss-Legendre points are used here.
For TDCFIE (αc = 0.2) solver, the current density amplitudes match well with the result calculated by
the analytical convolution (AC) solver with the 1st temporal basis function in all simulation times. For
TDEFIE case, the current density amplitudes calculated by numerical convolution (NC) and AC agree
well at early times. However, there is a gradual increase in its magnitude toward the end of simulation
for the exponential temporal basis function.

Table 3. The expression of four different types of T (τ̄Δt) (τ̄ = t/Δt).

��������Types
τ̄

(−1, 0) (0, 1) (1, 2)

1st 1 + τ̄ 1− τ̄ 0

2nd 1 + 1.5τ̄ + 0.5τ̄2 1− τ̄2 1− 1.5τ̄ + 0.5τ̄2

Sine 1− sin2(πτ̄/2) 1− sin2(πτ̄/2) 0

Exponential e−4.6487τ̄2/(1+4τ̄2−5τ̄4) e−4.6487τ̄2/(1+4τ̄2−5τ̄4) 0

In the second example, a cube of dimensions 1.0× 1.0 × 1.0m3 is meshed by planar triangle. The
cube is partitioned into 680 triangular patches and 1020 unknowns. A modulated Gaussian pulse with
f0 = 120MHz and fbw = 80MHz is incident on the cube. Here the time step Δt is equal to 0.25 ns.
Similarly, we choose the above mentioned four different temporal basis functions. And three Gauss-
Legendre points are adopted here. As shown in Fig. 4, the late time instability can be ensured using
our proposed method for both the TDCFIE (αc = 0.5) and TDMFIE solvers. From Fig. 5, the bi-static
RCS calculated by our proposed NC method agrees well with that of MOM in frequency domain.
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Figure 2. The relative error between the de-
veloped numerical method and analytical results
with different q.

Figure 3. The magnitude of the current density
for the sphere with different temporal basis
functions.

Figure 4. The magnitude of the current
density for the cube with different temporal basis
functions.

Figure 5. The Bi-static of the cube when the
frequency equals to 40MHz and 200MHz.

5. CONCLUSION

Variable substitution is proposed to smooth and eliminate the singularity of the convolutions between the
retarded potentials and the temporal basis functions. The calculating precision of our proposed method
using different q is compared with the analytical results. As demonstrated by numerical examples, this
improved numerical convolution method can ensure both the accuracy and the late time stability of the
MOT algorithm with different types of temporal basis functions. Other types of time basis functions
will be studied in future work.
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