Vol. 46
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-02-19
Compressive Sampling Multispectral Imaging and Unmixing Method for Fluorescent Imaging
By
Progress In Electromagnetics Research M, Vol. 46, 135-142, 2016
Abstract
Multispectral imaging is an important tool for understanding composite materials in many disciplines. Spectral unmixing enables the determination of individual fluorophore distributions. Due to the dispersive nature of biomaterials the observed spectra of fluorescent dyes is unknown. Spectral unmixing can be accomplished for unknown endmember spectra using minimum volume simplex analysis (MVSA). Compressive sampling (CS) is a method to reduce the computational cost of operating on sparse data sets and can be performed efficiently using NESTA based on Nesterov's algorithm. Here we demonstrate that NESTA and MVSA can be combined with a denoising threshold to create a compressive sampling and multispectral unmixing (CSMIU) method that enables efficient bioimaging and unmixing with high levels of accuracy (spectral angle distances (SADs) < 0.05). This CSMIU method may potentially enable broadband and in vivo bioimaging modalities.
Citation
Yamin Song, Fuhong Cai, Julian Evans, Erik Forsberg, and Sailing He, "Compressive Sampling Multispectral Imaging and Unmixing Method for Fluorescent Imaging," Progress In Electromagnetics Research M, Vol. 46, 135-142, 2016.
doi:10.2528/PIERM16011402
References

1. Jorgensen, K., J. Africano, K. Hamada, et al. "Physical properties of orbital debris from spectroscopic observations," Advances in Space Research, Vol. 34, No. 5, 1021-1025, 2004.
doi:10.1016/j.asr.2003.02.031

2. Lin, R. P., B. R. Dennis, G. J. Hurford, et al. The Reuven Ramaty High-energy Solar Spectroscopic Imager (RHESSI), Springer Netherlands, 2003.
doi:10.1007/978-94-017-3452-3

3. Pham, T. H., F. Bevilacqua, T. Spott, et al. "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging," Applied Optics, Vol. 39, No. 34, 6487-6497, 2000.
doi:10.1364/AO.39.006487

4. Keshava, N. and J. F. Mustard, "Spectral unmixing," IEEE Signal Processing Magazine, Vol. 19, No. 1, 44-57, 2002.
doi:10.1109/79.974727

5. Zacharakis, G., R. Favicchio, A. Garofalakis, et al. "Spectral unmixing of multi-color tissue specific in vivo fluorescence in mice," European Conference on Biomedical Optics. Optical Society of America, 6626-8, 2007.

6. Xu, H. and B. W. Rice, "In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique," Journal of Biomedical Optics, Vol. 14, No. 6, 064011-064011-9, 2009.
doi:10.1117/1.3258838

7. Mansfield, J. R., K. W. Gossage, C. C. Hoyt, et al. "Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging," Journal of Biomedical Optics, Vol. 10, No. 4, 041207-041207-9, 2005.
doi:10.1117/1.2032458

8. Duarte, M. F., M. A. Davenport, D. Takhar, et al. "Single-pixel imaging via compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 83, 2008.
doi:10.1109/MSP.2007.914730

9. Candè, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731

10. Soldevila, F., E. Irles, V. Durán, et al. "Single-pixel polarimetric imaging spectrometer by compressive sensing," Applied Physics B, Vol. 113, No. 4, 551-558, 2013.
doi:10.1007/s00340-013-5506-2

11. Li, C., T. Sun, K. F. Kelly, et al. "A compressive sensing and unmixing scheme for hyperspectral data processing," IEEE Transactions on Image Processing, Vol. 21, No. 3, 1200-1210, 2012.
doi:10.1109/TIP.2011.2167626

12. Shuai, T., X. Zhang, M. Zhang, et al. "Accuracy analysis of lunar mineral end members extraction using simulated Chang’ E-1 IIM data," Yaogan Xuebao - Journal of Remote Sensing, Vol. 16, No. 6, 1205-1221, 2012.

13. Nascimento, J. M. P. and J. M. B. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 4, 898-910, 2005.
doi:10.1109/TGRS.2005.844293

14. Becker, S., J. Bobin, and E. J. Candès, "NESTA: A fast and accurate first-order method for sparse recovery," SIAM Journal on Imaging Sciences, Vol. 4, No. 1, 1-39, 2011.
doi:10.1137/090756855

15. Zhan, Y., J. Qian, D. Wang, et al. "Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy," Angewandte Chemie International Edition, Vol. 52, No. 4, 1148-1151, 2013.
doi:10.1002/anie.201207909

16. Studer, V., J. Bobin, M. Chahid, et al. "Compressive fluorescence microscopy for biological and hyperspectral imaging," Proceedings of the National Academy of Sciences, Vol. 109, No. 26, E1679-E1687, 2012.
doi:10.1073/pnas.1119511109