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Compressive Sampling Multispectral Imaging and Unmixing Method
for Fluorescent Imaging
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Abstract—Multispectral imaging is an important tool for understanding composite materials in many
disciplines. Spectral unmixing enables the determination of individual fluorophore distributions. Due
to the dispersive nature of biomaterials the observed spectra of fluorescent dyes is unknown. Spectral
unmixing can be accomplished for unknown endmember spectra using minimum volume simplex analysis
(MVSA). Compressive sampling (CS) is a method to reduce the computational cost of operating on
sparse data sets and can be performed efficiently using NESTA based on Nesterov’s algorithm. Here
we demonstrate that NESTA and MVSA can be combined with a denoising threshold to create a
compressive sampling and multispectral unmixing (CSMIU) method that enables efficient bioimaging
and unmixing with high levels of accuracy (spectral angle distances (SADs) < 0.05). This CSMIU
method may potentially enable broadband and in vivo bioimaging modalities.

1. INTRODUCTION

Multispectral imaging (MSI) is an important tool to acquire a spectral image and has a wide range
of practical applications, including identification of orbital debris [1], astrophysical spectroscopy [2],
and biomedical imaging [3]. Combining with the spectral unmixing method, the wealth of spectral
information in a 2-D image allows for auto identification in the spectral-image [4]. Spectral unmixing
is an important method for in vivo fluorescence imaging [5, 6]. Typically, an imaging spectrometer or
a liquid crystal tunable filter (LCTF) acts as dispersive element in an MSI system and a 2-D Charge
Coupled Device (CCD) captures the optical signal [7]. Si-based CCDs, which are relatively cheap and
commonly used, are useable in the spectral range between 200 nm–1100 nm. Unfortunately however,
imaging at wavelengths outside this spectral range is significantly more complicated and costly [8].

An imaging method using a single-pixel detector and a Digital Mirror Device (DMD) to acquire an
image [6], can be a reasonably efficient and cheap to acquire a signal in a spectral range much broader
than that with Si-based CCD. In principle, by substituting the single-pixel detector with a proper
monochromator, a single-pixel imaging system can work from the visible to the infrared (450 nm–
2500 nm). However, current single-pixel imaging systems are limited by their achievable frames per
second (fps) rate due to the modulation frequency of the DMD. Compressive sampling (CS) is an
efficient signal acquisition protocol that is able to reconstruct the signal from an apparent incomplete
set of measurements by utilizing the fact that many natural signals are sparse or compressible when
expressed in a proper function basis [9]. The object reconstruction can be achieved by solving a convex
optimization program [10].

In Ref. [11], a CS based imaging method was applied to separate the different zone of a color wheel
presented. However the algorithm used requires certain a priori knowledge about the endmembers
(being the spectrum of distinct materials of which a mixed pixel is composed).
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Here we report a compressive sampling multispectral imaging method, in which blind spectral
unmixing without knowing the endmember distributions as a priori is achieved. We show that through
properly removing the noise in raw data, the multispectral images derived from compressive sampling
can be well unmixed without a priori knowledge of the spectral information of fluorescent agents under
investigation.

2. METHODS

2.1. Multispectral Unmixing

In multispectral imaging the spectrum of each pixel represents a mixture of the spectra of the distinct
materials (endmembers). By using a multispectral unmixing method, the measured spectrum of such
a mixed pixel can be decomposed into the distinct spectra of the endmembers and their fractional
abundances (the relative concentration of the endmembers in the pixel) can be obtained [12].

The linear spectral mixture model (LSMM) is one of the commonly used approaches to analyze
multispectral images and unmix a measured spectrum of several different material substances. In
LSMM, it is assumed that the spectral response in each pixel is a linear combination of the individual
spectra of luminophor materials:

Y = cMX = c
∑p

i=1
MiXi, (1)

where Y is the raw experimental multispectral image with dimension of L × N ; L is the number of
bands; N is the number of pixels; p is the number of luminophor materials. M(X) is an L× p (p × N)
matrix representing the respective materials spectra (concentration distributions); Mi is the ith column
vector of M describing the spectrum of the ith material; Xi is the ith row vector of X describing the
ith material’s concentration distribution; c is a constant coefficient.

In our study, we use the MVSA algorithm to unmix the reconstructed data. MVSA is an endmember
generation algorithm with outstanding performance, which is initialized by using the Vertex Component
Analysis (VCA) [13] endmembers extraction result. After multispectral unmixing, the emission spectra
can be derived. Then the concentration distributions of luminophor materials can be reconstructed by
solving Eq. (1).

2.2. Principle of Compressive Sampling

Compared with the conventional methods, in compressive sampling, a signal can be recovered by far
fewer samples under certain conditions. A detailed description of compressive sampling based single-
pixel imaging can be found in Ref. [8]. Herein, the image of the sample object is represented by an
N × 1 vector x, which can be expressed as x = Ψα, where Ψ is an N × N representation basis matrix
with vectors {Ψk} as the columns and α is the N × 1 vector composed of the coefficients of x in the
expansion.

For most images of interest, only a small fraction of the coefficients in vector α are nonzero. By
using CS, an object image can be reconstructed by M (M < N) linear measurements of the object
image projected on a basis of M intensity patterns Φm (m = 1, 2, . . .,M) with an N -pixel resolution.
The measurement can be expressed as y = Φx, where Φ is a M × N sampling matrix with each row
a base vector Φm and y an M × 1 vector representing M measurements obtained by a single-point
detector.

The measurement process can be represented by

y = Φx = Φ(Ψα) = (ΦΨ)α = Θα, (2)

where Φ is a random projection matrix, and Ψ is a short-time Fourier basis.
To recover the image x from the random measurements y, a proper reconstruction algorithm must

be used to solve Eq. (2). The best strategy is to perform the l1-norm minimization of α subject to
Eq. (2). As most of the measurements are with noise, it is better to relax the constraints into

min ‖α‖l2
subjectto ‖y − Θα‖l2

≤ ε, (3)

where ε bounds the amount of noise in the data [9].
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In this study, we use the NESTA solver [14] to reconstruct the image for each band. The NESTA
algorithm is base on Nesterov’s method and obeys the properties of speed, accuracy and flexibility. By
using NESTA solver L times for L bands, an L × N multispectral image can be derived.

2.3. Postprocessing of CS Images before Spectral Extracting

Images obtained by means of CS typically contain random noise, which is more serious with a decreased
number of measurements. The random noise dominates the background signal of the image and lowers
the signal to noise ratio (SNR). For a spectral image with high SNR, the background of image can
be ignored when performing spectral unmixing as the majority of the background value is close to
zero. However, for spectral images acquired through CS, the background bears high noise and non-zero
optical intensity value. This noise will deteriorate the results of spectral unmixing and the noise in
background should be extracted and removed before performing multispectral unmixing. Herein, the
spectral image can be treated as a two-dimensional optical intensity distribution, in which the maximum
optical intensity is denoted by Imax. During the process of multispectral unmixing, pixels with extreme
low optical signal (less than 9.5% of Imax) are removed, making it possible to perform spectral unmixing
in a CS case. Here 9.5% is defined as the denoising factor. Enlarging the denoising factor can improve
the SNR of the spectral image, however the cost of a reduced dynamic range of the image. For our
fluorescent image, the choice of 9.5% as the denoising factor is a tradeoff between the accuracy of
spectral unmixing and the dynamic range.

2.4. Similarity Metric

To evaluate the similarity between pure and reconstructed multispectral images, a distance metric
proposed by Nascimento, spectral angle distance (SAD), is adopted [15]. SAD is expressed as

SAD = COS−1

(
α · β

||α|| ∗ ||β||
)

, (4)

where α and β denote the pure spectrum and the extracted spectrum, respectively. Generally, if SAD is
less than 0.1, the multispectral reconstruction’s accuracy is acceptable and the extracted endmembers
can be used for further applications [12].

3. SIMULATED RESULTS AND ANALYSIS

In our previously reported work we obtained spectral images of a mouse injected with fluorescent agent
DTTC (Diethyl thioaldehyde tricarbocyanine iodide) in the nanoparticles [15]. A MaestroTM in-vivo
imaging system (CRI, Woburn, Massachusetts) was used to acquire the original data, M = [M1,M2]

(a) (b) (c)

Figure 1. Original fluorescent distribution and spectra for a mouse injected with fluorescent agent
DTTC (Diethyl thioaldehyde tricarbocyanine iodide). (a)–(b) Original distribution for fluorescence
(DTTC) and autofluorescent material. (c) Fluorescence (DTTC) and autofluorescence spectra.
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and X = [X1,X2], where M1,2 and X1,2 represent the fluorescent spectra and fluorescent distributions
for the DTTC and the autofluorescence. M1,2 consist of 22 bands in a range of 740 nm to 950 nm. The
original fluorescent spectra and distributions are shown in Fig. 1. The DTTC is concentrated in the
liver due to the metabolic functions of the mouse. The top of the autofluorescence signal locates at the
stomach, which is attributed to the food eaten by the mouse. By using the original data M and X, the
MSI data Y can be derived by using Eq. (1).

(a) (b) (c)

Figure 2. Spectral unmixing results by using MVSA algorithm. (a) Original and reconstructed
DTTC fluorescence spectra. (b) Original and reconstructed autofluorescence spectra. (c) Relative
errors between the original and reconstructed spectra.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

(o) (p)

Figure 3. Multispectral image cube reconstructed by means of the CS algorithm at 8 of 22 wavelengths
with a separation interval of 30 nm. The first and third columns present the original spectral images;
the second and fourth columns present the reconstructed images accordingly. The reconstructed images
have relatively larger background noise.
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To validate the MVSA algorithm, the MSI data Y were treated as the sole input variables and
processed by MVSA without any other prior knowledge and the results are represented as Mest. As
shown in Figs. 2(a) and (b), the original spectra M and the reconstructed spectra Mest fit well. The
relative errors are shown in Fig. 2(c). We observe that the MVSA relative error is less than 0.4% without
any other prior knowledge autofluorescence spectra, showing the feasibility of using MVSA to perform
spectral unmixing for mouse fluorescent imaging.

A recent work [10] has also demonstrated that multispectral images can be acquired sequentially
through a CS based single pixel imaging scheme. The question is: can multispectral images acquired
from this CS based single pixel imaging scheme be well spectral unmixed? In the following, we will
numerically simulate MSI data acquired by CS based single pixel imaging and demonstrate the feasibility
of unmixing the simulated MSI data.

The original MSI data Y is composed of multiple images, each of which with a spatial resolution
of 128 × 128 pixels, represents a 2-D fluorescent distribution at one spectral band. For one image,
a series of 128 × 128 random matrixes, whose elements are uniformly distributed in the range (0, 1)
and binarized by a threshold value 0.5, was chosen as the random patterns. A CS measurement was
performed by projecting one random pattern on one image and focusing the light of this projected
image onto a single pixel detector. After repeating the measurement process T times, an intensity
measurement sequence with T elements is acquired. As mentioned in Ref. [16], a higher compression
rate leads to a reconstructed CS image with a lower SNR. Taken the SNR into account, through a series
of pre-simulation, the number of CS measurements, T , was chosen to be 4096 (4096 = 128× 128× 1/4,
i.e., a compression rate of 4 : 1). The above process can be numerically simulated, and through the
T × 1 simulated single pixel detection data, together with the random patterns, the NESTA solver can
reconstruct the image. The images reconstructed using the NESTA solver as well as the original images
are shown in Fig. 3. By using the CS method, the time to acquire multispectral images through the

(a) (b)

(c) (d)

Figure 4. Endmember extraction results without handling noise of (a) DTTC fluorescence spectrum.
(b) Autofluorescence spectrum. (c) Relative error for DTTC fluorescence and autofluorescence spectra.
(d) The original and reconstructed optical intensity curves represent the line profiles in Fig. 3(o) and
Fig. 3(p) respectively.
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single pixel imaging scheme can be reduced by a quarter, however, at the expense of an added large
background noise. As can be seen in Fig. 4(d), the reconstructed optical intensity curve, representing
the line profile in Fig. 3(p) (950 nm), has relatively large background noise as compared to the original
optical intensity curve corresponding to the line profile in Fig. 3(o). However, as can also be seen,
the reconstructed images in Fig. 3 still clearly provides the information that the fluorescent agents
are mostly accumulated in the liver indicating that it is feasible to use such a CS based single pixel

(a) (b) (c)

Figure 5. Spectral unmixing results from 25% measurements (with a compression ratio of 4 : 1)
after CS. (a) original and reconstructed Fluorescence (DTTC) spectra. (b) Original and reconstructed
autofluorescence spectra. (c) Relative error for fluorescence and autofluorescence spectra. The relative
error between original and reconstructed autofluorescence spectra is lower than 8% and that for DTTC
spectra is lower than 0.2%.

(a) (b)

(c) (d)

Figure 6. Reconstructed concentration distribution of (a) florescence (DTTC) and (b) autofluorescence.
Reconstructed optical intensity curves of (c) and (d) represent the line profiles in (a) and (b) respectively.
The original ones represent the corresponding line profiles (not marked) in Fig. 1(a) and Fig. 1(b)
respectively.
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imaging scheme for in-vivo fluorescence imaging in biomedical studies. This analysis is valid for other
wavelengths.

The NESTA reconstructed images are still admixed with autofluorescence signals. In order to
unmix the autofluorescence, the NESTA reconstructed images are further processed by using the MVSA
algorithm. However, due to the large background noise in the spectral-images, the directly reconstructed
spectra are not correct at all, which can be seen from the unreasonable negative values in the spectral
curves as shown in Figs. 4(a) and (b).

As described in Section 2.3, to remove the background noise and obtain a better spectral unmixing
result, pixels having extremely low optical signal strength (less than 9.5% of the Imax) are set to be
zero. After de-noising, the NESTA reconstructed images are processed by the MVSA algorithm again,
and the new unmixing spectra are shown in Fig. 5. Compared with the unmixing spectra shown in
Fig. 4, it is evident that the de-noising method can improve spectral unmixing result of CS images. The
SADs for the reconstructed DTTC and autofluorescence spectra are 0.0026 and 0.0477 respectively. The
reconstructed DTTC spectrum is a good fit to the original spectrum, having a relative error less than
0.2%. The reconstructed result of autofluorescence spectrum is, on the other hand, relatively poor, but
even so, the relative error is still less than 8%. The main reason for this is due to the low intensity of
autofluorescence, which makes it vulnerable to background noise. As can be seen in Fig. 6, there exists
obvious background noise in the reconstructed autofluorescence image. From Fig. 6(c), we can see that,
the reconstructed concentration distribution of the DTTC, which is the fluorescent signal of interest,
agrees well with the original data with despite the presence of a high SNR.

4. CONCLUSION

In this paper we have presented a compressive sampling based imaging and unmixing scheme for
multispectral data processing,which does not require any a priori knowledge of the endmember
distribution. The method has applications in fluorescent imaging of small animals. Through the use
of compressive sampling, the requirements on hardware design are less stringent than for traditional
approaches. Currently, the work of this paper applies to when the signal of interest is comparable to the
autofluorescence and the demand for resolution is not high, due to the denoising method of removing
pixels under chosen threshold for background noise induced by compressive sampling. The numerical
results presented in this paper clearly demonstrate the potential of this method to be able to extract
essential spectral informationin a precise manner. Extending this technique to situations with low signal
to noise ratio is theoretically achievable since NESTA and MVSA have the capability to operate at high
accuracy [12, 16], but the denoising procedure would require more sophistication. Compressive sampling
unmixing, as a complement to standard unmixing techniques, has the potential to be applied in the real
large-scale multispectral imaging applications in the future.
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