Vol. 46
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-01-12
Superresolution Imaging for Forward-Looking Scanning Radar with Generalized Gaussian Constraint
By
Progress In Electromagnetics Research M, Vol. 46, 1-10, 2016
Abstract
A maximum a posteriori (MAP) approach, based on the Bayesian criterion, is proposed to overcome the low cross-range resolution problem in forward-looking imaging. We adapt scanning radar system to record received data and exploit deconvolution method to enhance the real-aperture resolution because the received echo is the convolution of target scattering coefficient and antenna pattern. The Generalized Gaussian distribution is considered as the prior information of target scattering coefficient in MAP approach for the reason that it could express different target scattering coefficient properties with the control of statistic parameter. This constraint term makes the proposed algorithm useful in different applications. On the other hand, the reconstruction problem can also be viewed as the lp-norm (0 < p ≤ 2) regularization. Simulation results show the robustness of the proposed algorithm against additive noise compared with other superresolution methods.
Citation
Yin Zhang, Yulin Huang, Yuebo Zha, and Jianyu Yang, "Superresolution Imaging for Forward-Looking Scanning Radar with Generalized Gaussian Constraint," Progress In Electromagnetics Research M, Vol. 46, 1-10, 2016.
doi:10.2528/PIERM15120805
References

1. Schiavulli, D., F. Nunziata, G. Pugliano, and M. Migliaccio, "Reconstruction of the normalized radar cross section field from gnss-r delay-doppler map," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, No. 5, 1573-1583, 2014.
doi:10.1109/JSTARS.2014.2301019

2. Ausherman, D. A., A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Developments in radar imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 4, No. AES-20, 363-400, 1984.
doi:10.1109/TAES.1984.4502060

3. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar, John Wiley & Sons, 1991.

4. Jakowatz, C. V., D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson, Spotlight-mode Synthetic Aperture Radar: A Signal Processing Approach, Springer Science & Business Media, 2012.

5. Loehner, A., "Improved azimuthal resolution of forward looking sar by sophisticated antenna illumination function design," IEE Proceedings - Radar, Sonar and Navigation, Vol. 145, No. 2, 128-134, 1998.
doi:10.1049/ip-rsn:19981731

6. Dai, S. and W. Wiesbeck, "High resolution imaging for forward looking sar with multiple receiving antennas," IEEE 2000 International Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000, Vol. 5, 2254-2256, IEEE, 2000.

7. Espeter, T., I. Walterscheid, J. Klare, A. R. Brenner, and J. H. Ender, "Bistatic forward-looking sar: results of a spaceborne-airborne experiment," IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 4, 765-768, 2011.
doi:10.1109/LGRS.2011.2108635

8. Wu, J., Z. Li, Y. Huang, J. Yang, H. Yang, and Q. H. Liu, "Focusing bistatic forward-looking sar with stationary transmitter based on keystone transform and nonlinear chirp scaling," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 1, 148-152, 2014.
doi:10.1109/LGRS.2013.2250904

9. Högbom, J., "Aperture synthesis with a non-regular distribution of interferometer baselines," Astronomy and Astrophysics Supplement Series, Vol. 15, 417, 1974.

10. Clark, B., "An efficient implementation of the algorithm `clean'," Astronomy and Astrophysics, Vol. 89, 377, 1980.

11. Bose, R., A. Freedman, and B. D. Steinberg, "Sequence clean: A modified deconvolution technique for microwave images of contiguous targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 1, 89-97, 2002.
doi:10.1109/7.993231

12. Bayliss, E. T., "Design of monopulse antenna difference patterns with low sidelobes," Bell System Technical Journal, Vol. 47, No. 5, 623-650, 1968.
doi:10.1002/j.1538-7305.1968.tb00056.x

13. Sherman, S. M. and D. K. Barton, Monopulse Principles and Techniques, Artech House, 2011.

14. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Optimization of the difference patterns for monopulse antennas by a hybrid real/integer-coded differential evolution method," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 372-376, 2005.
doi:10.1109/TAP.2004.838788

15. Pérez-Martínez, F., J. Garcia-Fominaya, and J. Calvo-Gallego, "A shift-and-convolution technique for high-resolution radar images," IEEE Sensors Journal, Vol. 5, No. 5, 1090-1098, 2005.
doi:10.1109/JSEN.2005.850998

16. Munoz-Ferreras, J., J. Calvo-Gallego, F. Pérez-Martínez, A. Blanco-del Campo, A. Asensio-Lopez, and B. Dorta-Naranjo, "Motion compensation for isar based on the shift-and-convolution algorithm," 2006 IEEE Conference on Radar, Vol. 5, IEEE, 2006.

17. Ly, C., H. Dropkin, and A. Z. Manitius, "Extension of the music algorithm to millimeter-wave (mmw) real-beam radar scanning antennas," AeroSense 2002, 96-107, International Society for Optics and Photonics, 2002.

18. Uttam, S. and N. A. Goodman, "Superresolution of coherent sources in real-beam data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 3, 1557-1566, 2010.
doi:10.1109/TAES.2010.5545210

19. Zhang, Y., Y. Zhang, Y. Huang, J. Yang, Y. Zha, J. Wu, and H. Yang, "Ml iterative superresolution approach for real-beam radar," 2014 IEEE Radar Conference, 1192-1196, IEEE, 2014.
doi:10.1109/RADAR.2014.6875778

20. Zhang, Y., Y. Zhang, W. Li, Y. Huang, and J. Yang, "Angular superresolution for real beam radar with iterative adaptive approach," 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 3100-3103, IEEE, 2013.
doi:10.1109/IGARSS.2013.6723482

21. Zhang, Y., W. Li, Y. Zhang, Y. Huang, and J. Yang, "A fast iterative adaptive approach for scanning radar angular superresolution," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. PP, No. 99, 1-10, 2015.

22. Tan, X., W. Roberts, J. Li, and P. Stoica, "Sparse learning via iterative minimization with application to mimo radar imaging," IEEE Transactions on Signal Processing, Vol. 59, No. 3, 1088-1101, 2011.
doi:10.1109/TSP.2010.2096218

23. Xu, G., M. Xing, L. Zhang, Y. Liu, and Y. Li, "Bayesian inverse synthetic aperture radar imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 6, 1150-1154, 2011.
doi:10.1109/LGRS.2011.2158797

24. Guan, J., J. Yang, Y. Huang, and W. Li, "Maximum a posteriori based angular superresolution for scanning radar imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, No. 3, 2389-2398, 2014.
doi:10.1109/TAES.2014.120555

25. Zha, Y., Y. Huang, Z. Sun, Y. Wang, and J. Yang, "Bayesian deconvolution for angular super-resolution in forward-looking scanning radar," Sensors, Vol. 15, No. 3, 6924-6946, 2015.
doi:10.3390/s150306924

26. Osher, S., M. Burger, D. Goldfarb, J. Xu, and W. Yin, "An iterative regularization method for total variation-based image restoration," Multiscale Modeling & Simulation, Vol. 4, No. 2, 460-489, 2005.
doi:10.1137/040605412

27. Golub, G. H., P. C. Hansen, and D. P. O’Leary, "Tikhonov regularization and total least squares," SIAM Journal on Matrix Analysis and Applications, Vol. 21, No. 1, 185-194, 1999.
doi:10.1137/S0895479897326432

28. Vauhkonen, M., D. Vadasz, P. A. Karjalainen, E. Somersalo, and J. P. Kaipio, "Tikhonov regularization and prior information in electrical impedance tomography," IEEE Transactions on Medical Imaging, Vol. 17, No. 2, 285-293, 1998.
doi:10.1109/42.700740

29. Aster, R. C., B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, Academic Press, 2011.