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Superresolution Imaging for Forward-Looking Scanning Radar
with Generalized Gaussian Constraint

Yin Zhang*, Yulin Huang, Yuebo Zha, and Jianyu Yang

Abstract—A maximum a posteriori (MAP) approach, based on the Bayesian criterion, is proposed to
overcome the low cross-range resolution problem in forward-looking imaging. We adapt scanning radar
system to record received data and exploit deconvolution method to enhance the real-aperture resolution
because the received echo is the convolution of target scattering coefficient and antenna pattern. The
Generalized Gaussian distribution is considered as the prior information of target scattering coefficient
in MAP approach for the reason that it could express different target scattering coefficient properties
with the control of statistic parameter. This constraint term makes the proposed algorithm useful in
different applications. On the other hand, the reconstruction problem can also be viewed as the lp-norm
(0 < p ≤ 2) regularization. Simulation results show the robustness of the proposed algorithm against
additive noise compared with other superresolution methods.

1. INTRODUCTION

Radar imaging has been widely used in many civilian and military fields due to its all-weather and
day/night ability [1, 2]. High resolution of side-looking and forward-squint imaging of motion platforms
have been deeply discussed for many years [3, 4]. However, It is difficult to realize matched two-
dimensional resolution in forward-looking region due to the symmetrical and small Doppler bandwidth.
This imaging bottleneck seriously restricts the practical applications such as self-landing, navigation,
etc.

Many algorithms are proposed for solving this low cross-range resolution problem. The SAR
imaging methods have been investigated to realize high cross-range resolution of forward-looking image
of this decade, including forward-looking SAR and bistatic SAR [5–8]. The forward-looking SAR
employs a uniform array sensors to form the effectiveness second order Doppler phase and solve the
ambiguity problem. However, the requirement of setting a large size of array sensors in front of the
motion platform influences the stealthiness and maneuverability of airbornes. The bistatic SAR breaks
through the limitation of monostatic SAR on forward-looking imaging with appropriate geometry
configurations. But the strict geometrical relationship of the two platforms is hardly realized, and
the synchronization problem has not be totally solved.

Obviously, realizing high cross-range resolution in forward-looking imaging by SAR techniques will
increase the burden and complexity of system and structure. In forward-looking imaging, the scanning
radar system which collects received data by a single real aperture antenna or a small size array, is often
employed. The benefits of this imaging system include the suitability for any geometry situation, low
cost and small size. Although this imaging model obtains low cross-range scanning resolution, we can
develop signal processing methods to solve this problem. The clean technique [9–11] and monopulse
technique [12–14] are two beam sharpen methods based on scanning radar which could output the high
precision of target angle position for single target. However, both of the techniques can not resolve
the adjacent targets in one beam. The “clean” algorithm is a classic beam cancellation algorithm
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which can be employed to improve the resolution of both the range and cross-range dimensions. But
its performance has a obvious degradation when some targets are within one beamwidth. Although
improved “clean” algorithms have been proposed, the deconvolution error is hard to eliminate. Pérez-
Mart́ınez et al. developed a Shift-and-Convolution technique for high-resolution radar images with a
single realbeam antenna [15, 16]. But this method requires high range resolution, and does not improve
the cross-range resolution. Recently, spectrum estimation approaches, including the Scan-MUSIC
algorithm and Minimum-Variance beamforming technique have been introduced to improve the cross-
range resolution of real aperture radar [17–19]. But the problems of how to obtain enough snapshots for
platforms in motion and approaches to improve the computational efficiency still remain. In [20, 21], the
real iterative adaptive approach (Real-IAA) were introduced to the scanning radar system to enhance
the cross-range resolution with only one snapshot.

Bayesian deconvolution is another kind of method which is widely used in radar imaging and
detection areas [22, 23]. This method constructs the objective function according to he statistical
property of noise and target scattering coefficient distributions. Then reasonable approaches are
developed to solve the objective function and obtain the reconstruct result. We introduce this method to
forward-looking imaging because the received echo of scanning radar can be regarded as the convolution
of target scattering coefficient and antenna pattern [24, 25]. In [24], the Poisson-based maximum a
posteriori (MAP) algorithm is proposed based on the assumptions that both of the noise and target
scattering coefficient obey independent Poisson statistic. Some references consider different penalty
terms in scanning radar imaging for high resolution and denoising [23, 26].

In this paper, we first assume the independent complex Gaussian statistic as distribution
characteristic of noise. This assumption also could overcome the complex signal deconvolution problem
compare with traditional deconvolution approaches. Besides, the Generalized Gaussian distribution is
considered as the prior information of target scatters distribution for its wide applicability. It gives us
the choice of adopting reasonable prior information when faced with different imaging scenes because the
statistic property of this distribution is variational by controlling the statistic parameter γ (0 < γ ≤ 2).
On the other hand, the proposed algorithm can be viewed as the lp-norm regularization problem. It
becomes the sparse signal recovery problem when 0 < p ≤ 1, and the common regularization problem
when 1 < p ≤ 2.

This paper is organized as follows. The convolution model of forward-looking received signals is
analyzed in Section 2. In Section 3, the objective function is established according to the statistic
characteristics of noise and target scatters. In addition, the derivation of objective function is given
in detail. In Section 4, simulations are provided to verify the performance of the proposed algorithm.
Conclusions are given in Section 5.

2. SIGNAL MODEL OF FORWARD-LOOKING SCANNING IMAGING

Figure 1 shows the geometric model of the forward-looking scanning radar. The antenna sweeps across
the forward-looking scene with counterclockwise mechanical movement. In radar imaging, the −10◦
to 10◦ is often defined as the forward-looking region. The airborne moves along the radial direction
with a fixed velocity υ and the platform height is H. Some targets are distributed in the forward-
looking imaging region. The antenna transmits linear frequency modulation (LFM) signals for high
range resolution. The received signal can be written as the following expression after the antenna scans
the whole forward-looking area

s (t, θ,) =
∑

(x,y)∈Ω

σ (xi, yj) · ω
(

θ − θ (xi, yj)
Tβ

)
· rect

(
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c

)
· exp

(
−j

4π
λ

R (t, xi, yj)
)

· exp

(
jπKr

[
τ − 2R (t, xi, yj)

c

]2
)

, (1)

where t and τ represent the fast and slow time in range and cross-range dimension, respectively; Ω
denotes the two-dimensional imaging area; σ(xi, yj) denotes the scattering coefficient of the target
located at (xi, yj); ω(·) denotes the antenna pattern modulation function; Tβ denotes the antenna
beamwidth; θ(xi, yj) denotes the angle between the moving direction and the (xi, yj)th target; rect(·)
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Figure 1. Geometric model of forward-looking
scanning radar.

Figure 2. Range history of antenna and target.

denotes the unit rectangular function; R(t, xi, yj) denotes the distance history of scanning antenna and
the (xi, yj)th target; λ denotes the wavelength of transmitted signal; Kr denotes the chirp rate; c is
the speed of light. The original distance between the airborne and the target is R(xi, yj), and ϕ is the
incident angle of antenna. The original distance between the airborne and target Pi is R0.

Then we take one target in the forward-looking region as an example to analyze the range history.
Figure 2 shows the range relationship between airborne and the target located at (xi, yj) in the forward-
looking area. The range history of airborne and the (xi, yj)th target is

R (t, xi, yj) =
√

R (xi, yj)
2 + (υt)2 − 2R (xi, yj) cos θ(xi, yj) cos ϕυt. (2)

We find that the second order term is very small, and the product of time and velocity is also much
smaller than the original distance after the Taylor expand of Equation (2). So the range history can be
approximately written as

R (t, xi, yj) (t) ∼= R (xi, yj) − cos θ (xi, yj) cos ϕυt. (3)

We employ pulse compression technique to realize high range resolution because the radar system
transmits linear frequency modulation (LFM) signals. For a typical forward-looking radar system, we
can construct the range walk correction function H(fr, τ) = exp(j2π·fr · υ·τc ) to eliminate the influence of
platform movement because the space-variant phenomenon caused by the variety of cross-range angular
can be ignored. After these operations, the two-dimensional received signals become

s(θ, τ)=
∑

(x,y)∈Ω

σ (xi, yj) · ω
(

θ − θ (xi, yj)
Tβ

)
· sin c

[
B

(
τ − 2R (xi, yj)

c

)]
· exp

(
−j

4π
λ
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)

. (4)

The received signal in Equation (4) has unmatched two-dimensional resolution. In order to improve
the cross-range resolution, we first rearrange Equation (4) as the following matrix form

s = Wσ + n =

⎡
⎣ WN×K

. . .
WM×K

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ (1, 1)
σ (1, 2)

...
σ (1,K)
...
σ (N,K)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ n, (5)
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where s = [s(1, 1), s(1, 2), . . . , s(1,M ), . . . , s(N,M)]T represents the measurement range profiles
which are rearranged in cross-range dimension with size NM × 1; N and M are the
sampling numbers of received signal in range and cross-range dimensions, respectively; σ =
[σ(1, 1), σ(1, 2), . . . , σ(1,K), . . . , σ(N,K)]T represents the unknown scene amplitude profiles which
are rearranged in cross-range dimension with size NK×1; n is the noise vector with dimension NM ×1
which satisfies the complex Gaussian distribution; W is the convolution measurement matrix with size
NM × NK which can be written as

W = [w1,1, . . . , w1,K , . . . , wi,j, . . . , wN,K ]T , (6)
and wi,j is

wi,j =
[
a(i,j,1)e

(−j 4π
λ

R(Δt,xi,yj)), . . . , a(i,j,NM)e
(−j 4π

λ
R(NMΔt,xi,yj))

]T
, (7)

where [a(i,j,1), . . . , a(i,j,NM)] is the convolution weighted vector of the antenna pattern and the (i, j)th
target. (e(−j 4π

λ
R(Δt,xi,yj)), . . . , e(−j 4π

λ
R(NMΔt,xi,yj))) represent the added phases cause by the relative

movement between antenna and the (i, j)th target, and Δt denotes the pulse repetition interval (PRI).
We can develop deconvolution method to reconstruct target scatters distribution in Equation (5).

3. MAP ALGORITHM WITH GENERALIZED GAUSSIAN CONSTRAINT

The proposed Maximum a posteriori (MAP) algorithm is investigated based on the Bayesian criterion.
The basic form of MAP estimator is

σ̂ = arg max
s

p (σ/s) = arg max
s

[p (s/σ) p (σ)] , (8)

where p (σ/s) is the posteriori probability density function (PDF); p (s/σ) is the likelihood PDF
determined by the statistical property of noise; p(σ) is the prior information of target scatters.

In radar imaging, the common hypothesis of noise statistic is Gaussian distribution. Meanwhile,
in order to overcome the complex-valued signal recovery problem, we assume that the observed noise
obeys i.i.d. complex Gaussian distribution. The likelihood function can be written as

p (σ/s) =
1

(πη2) MN
exp

[
− 1

η2
‖s− Wσ‖2

2

]
, (9)

where η2 is the variance of noise. We have mentioned that p(σ) expresses the prior information of target
scatters. In the references, some regularization constraints were considered as the prior information of
target scatters. Tikhonov regularization is a commonly used method of regularization of ill-posed
problems [27, 28]. The main motivation behind this regularization method lies in replacing the original
deconvolution problem with a nearby well-conditioned problem. Another common regularization term
is sparse constraint. Recently, the sparse signal recovery problem is deeply discussed in radar imaging
when the sampling number or target scatters distribution are sparse. In this paper, we employ the
Generalized Gaussian distribution as the prior information for the reason that it can describe as
different target distribution properties for varying dispersion parameters. The Laplace distribution
is often considered as the prior information in Bayesian method which makes the problem can be
viewed as the regularized problem with l1-norm constraint after the negative logarithm operation.
However, this prior information only applies to the sparse signal recovery problem. Compared to
the Laplace distribution, the Generalized Gaussian distribution can represent different constraints,
such as Tikhonov regularization and l1/2-norm. It makes the problem can be viewed as the adaptive
regularization problem. The Generalized Gaussian distribution function is

p (σ) =
NK∏
k=1

Ce−|σk |γ/μ = CNKe−
∑NK

k=1 |σk |γ/μ, (10)

where C is a normalizing constant, γ the dispersion parameter and μ the scale parameter. Using this
prior information, the posteriori probability function becomes

p (s/σ) p (σ) =
1

(πη2)MN
e
− 1

η2 ‖s−Wσ‖2
2 · CNKe−

∑NK
k=1 |σk|γ/μ. (11)
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For convenience of calculations, we use the negative logarithm operation to transform the objective
function as

− ln (f (s/σ) f (σ)) = MN ln
(
πη2
)

+ 1
η2 ‖s− Wσ‖2

2 − NK ln C +
NK∑
k=1

|σk|γ/μ. (12)

Equation (12) shows that the objective function can be viewed as a regularized estimation

problem with variable regularization term
NK∑
k=1

|σk|γ/μ. The objective function becomes the Tikhonov

regularization when γ = 2, and becomes the classic l1-norm optimization problem when γ = 1. It can
be viewed as the sparse signal recovery problem when 0 < γ ≤ 1. In practical applications, we often
determine this parameter according to the applications and prior information. When this algorithm
applies to target location, or the optical image which shows that there only have small number of
targets located in the forward-looking region, we can set 0 < γ ≤ 1. If we apply this algorithm to
airdrop or know the imaging scene is city, we can set 1 < γ ≤ 2 for better image quality and denoising.
In order to obtain the iterative expression, we first calculate the gradient of Equation (12) with respect
to σ as

∇ ln (f (s/σ) f (σ)) = WHWσ − WHs +
γη2

μ
Gσ, (13)

where (·)H means the conjugate matrix, G = diag{g1, . . . , gNK} and gk = |σk|γ−2. Equation (13) is
minimized when ∇ ln(f(s/σ)f (σ)) = 0. The simple optimal solution of Equation (13) is

σ =
(
WHW +

γη2

μ
G
)−1

WHs. (14)

Finally, we can get the following iterative formula according to Equation (14) as

σt+1 =
(
WHW +

γη2

μ
Gt

)−1

WHs, (15)

where t + 1 and t are the iterations, Gt = diag{(g1)t, . . . , (gNK)t} and (gk)t = |(σk)t|γ−2. In
Equation (15), parameter μ is determined by the targets distribution. The noise statistic parameter
η2 can be calculated by the following steps. We minimize Equation (12) with respect to η and set
(d/.dη)f(σ, η) = 0 which lead to

η2 =
1

MN
‖s− Wσ‖2

2 . (16)

The coarse noise statistic can be estimated by this equation. We substitute each iterative results of
Equation (15) into (16) to continually improve the estimated accuracy of η2 and σ because small error
may cause serious estimation bias. The iterative becomes

σt+1 =

(
WHW +

γ
(
η2
)t

μ
Gt

)−1

WHs, (17)

where (η2)t = 1
MN ‖s − Wσt‖2

2. Furthermore, the conjugate gradient (CG) method was employed to
realize the matrix inversion for higher computational efficiency [29]. This algorithm can also be promoted
to other radar imaging fields.

4. SIMULATIONS

This section compares the performance of proposed deconvolution algorithm with the Real-IAA and
Poisson-based MAP deconvolution algorithms.

Figure 3 shows the simulation scene that locates in the −5◦ to 5◦ of the forward-looking area, where
several strong scattering targets are in. The extended target width is 0.2◦. The beamwidth of scanning
radar is 3◦. Other simulation parameters are shown in Table 1.
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Table 1. Simulation parameters.

Parameter Value Units
Carrier frequency 9.6 GHz

Band width 60 MHz
Antenna scanning velocity 60 ◦/s
Pulse repetition frequency 1000 Hz

airborne height 1000 m
Incident angle 30 ◦

Working distance 50 km
airborne velocity 50 m/s
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Figure 3. Simulation scene.

Figures 4 to 6 show the simulation results processed by different algorithms when the signal to
noise ratio (SNR) is 25 dB. In the simulations, the added noise obeys a zero mean and complex Gaussian
distribution, and the SNR is defined as

SNR = 20log10

‖σ‖2

‖σ̂ − σ‖2

. (18)

Figure 4 (a) shows the real aperture image with low cross-range resolution after the processes of
pulse compression and motion compensation. Figures 4(b) shows the simulation result processed by the
Poisson-based deconvolution which has the phenomenon of distortion. Figure 4(c) shows the simulation
result of Real-IAA algorithm which improves the resolution at the same level as the proposed algorithm
when γ = 1.2. The proposed deconvolution algorithm realizes higher resolution with sparse constraints,
but it compresses the targets too much when γ = 0.8. We can choose suitable parameter of proposed
algorithm according to the practical requirements of imaging quality or resolution. Large values of γ
help to obtain more effective target feature, and sparse constraints is better for resolution.

The range profiles of 49.5 km and 52 km positions are taken as the examples to analyze the algorithm
performance. In the first range unit, a target is located at 0.5◦. Figure 5 shows the profiles which
include the original target distribution, real aperture echo and superresolution results processed by
different algorithms and parameters, perspectively. From this figure we find that the Poisson-based
MAP algorithm compresses the beam about 3 times as the real echo. The Real-IAA algorithm and
proposed algorithm with γ = 1.2 improve the resolution about 6 times than the real echo. The proposed
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Figure 4. Simulation results of scene when the SNR is 25 dB: (a) Real aperture echo, (b) poisson-
based MAP algorithm, (c) proposed deconvolution algorithm when γ = 1.2, (d) proposed deconvolution
algorithm when γ = 1, (e) proposed deconvolution algorithm when γ = 0.8.

algorithm realizes higher resolution with sparse constraints. It improves the resolution at least 10 times
when γ = 1 and 0.8. However, the target is divided into two targets when γ = 0.8. It could explain
the spot phenomenon in Figure 4(d). This sparse constraint improves the resolution with the cost of
target contour information. We need to select reasonable parameter according to the practical imaging
condition.

Figure 6 shows the profiles of two adjacent targets. The proposed method obviously realizes better
cross-range resolution than other algorithms. The Poisson-based MAP algorithm can not distinguish the
adjacent targets. The Real-IAA algorithm has limited improvement of cross-range resolution compared
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Figure 5. Profiles of single target with different algorithms.
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Figure 6. Profiles of two adjacent targets with different algorithms.

Figure 7. Relative error of different methods.
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with the proposed algorithm. The proposed algorithm almost entirely reconstructs the original targets
to the practical target width when γ = 1.2, and obtains high location accuracy when γ = 1 and 0.8. We
can make 1 < γ ≤ 2 in the applications of autonomous landing and terrain avoidance, and the sparse
constraint can be applied in guidance and target location.

Figure 7 shows the relative error (ReError) performance of the algorithms with a single extended
target in different noise levels. The ReError is computed as

ReError =
‖σ − σ̂‖2

‖σ‖2

(19)

It can be seen in Figure 7 that the Poisson-based MAP algorithm has higher ReError under various
SNR levels, while the proposed MAP algorithm is better than the conventional algorithms. The proposed
algorithm has the similar ReError with Real-IAA algorithm in high SNR conditions when γ = 1.2. It
is superior to the Real-IAA algorithm with sparse constraint. The reason is that the proposed MAP
algorithm provides reasonable prior information about the target distribution which leads to more stable
solution to the forward-looking imaging problem.

5. CONCLUSION

In this paper, a Bayesian deconvolution method is proposed to overcome the low cross-range resolution
problem of forward-looking area in motion platforms. The generalized Gaussian distribution is
considered as the prior information of target scattering coefficient to realize high image quality and
resolution because of the variability. We can control the statistic parameter of this distribution to make
the proposed algorithm suitable for different applications. Simulation results verify the effectiveness of
the proposed deconvolution algorithm.
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