Vol. 46
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-01-15
Study of Optical Responses in Hybrid Symmetrical Quasi-Periodic Photonic Crystals
By
Progress In Electromagnetics Research M, Vol. 46, 29-37, 2016
Abstract
The light propagation through a one-dimensional symmetrical photonic structure, determined by the symmetric Silver mean Ag4 distribution embedded between two Bragg structures Bg27 (Bg27/Ag4/Bg27), is studied using the transfer matrix method (TMM). The focus lies on the investigation of the influence of symmetry of the structure as well as the dependence of transmission on the frequency, angle of incidence of the light striking the structure and symmetrical deformation of the structure. The deformation was introduced by applying a power law, so that the coordinates y of the deformed object were determined through the coordinates x of the non-deformed structure in accordance with the following rule: y = x1+k. Here, k is the degree of the law. A comparison will be made with a symmetrical periodic structure having the same number of layers. All results will be discussed in relation with the k values. Indeed, in the case of low k values close to zero a monochromatic filter was obtained, and in the case of relatively high values, an omnidirectional mirror is obtained.
Citation
Zina Baraket, Jihene Zaghdoudi, and Mounir Kanzari, "Study of Optical Responses in Hybrid Symmetrical Quasi-Periodic Photonic Crystals," Progress In Electromagnetics Research M, Vol. 46, 29-37, 2016.
doi:10.2528/PIERM15112902
References

1. Shechtman, D., I. Blech, D. Gratias, and J. W. Cahn, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett., Vol. 53, No. 20, 1951, 1984.
doi:10.1103/PhysRevLett.53.1951

2. Wang, N., H. Chen, and K. H. Kuo, "Two-dimensional quasicrystal with eightfold rotational symmetry," Phys. Rev. Lett., Vol. 59, No. 9, 1010, 1987.
doi:10.1103/PhysRevLett.59.1010

3. Ishimasa, T., H. U. Nissen, and Y. Fukano, "New ordered state between crystalline and amorphous in Ni-Cr particles," Phys. Rev. Lett., Vol. 55, No. 5, 511, 1985.
doi:10.1103/PhysRevLett.55.511

4. Valy Vardeny, Z., A. Nahata, and A. Agrawal, "Optics of photonic quasicrystals," Nat. Photon., Vol. 7, 177-187, 2013.
doi:10.1038/nphoton.2012.343

5. Wang, Z., C. Guo, and W. Jiang, "Omnidirectional reflection extension in a one-dimensional superconducting-dielectric binary graded photonic crystal with graded geometric layers thicknesses," Progress In Electromagnetics Research Letters, Vol. 42, 13-22, 2013.
doi:10.2528/PIERL13061602

6. Nava, R., J. Taguena-Martinez, J. A. Riodel, and G. G. Naumis, "Perfect light transmission in Fibonacci arrays of dielectric multilayers," J. Phys.: Cond. Matt., Vol. 21, 155901, 2009.
doi:10.1088/0953-8984/21/15/155901

7. De Spinade, V. W., "New smarandache sequences: The family of metallic means," Smarandache: Notions Journal, Vol. 8, No. 1-3, 81, 1997.

8. Thiem, S., M. Schreiber, and U. Grimm, "Light transmission through metallic-mean quasiperiodic stacks with oblique incidence," Philos. Mag., Vol. 91, 2801-2810, 2011.
doi:10.1080/14786435.2010.523721

9. Stewart, I., "Cuentos de un número desdeñado," Investigación y Ciencia, August 1996.

10. Zaghdoudi, J., M. Kanzari, and B. Rezig, "Design of omnidirectional asymmetrical high reflectors for optical telecommunication wavelengths," Eur. Phys. J. B, Vol. 42, 181, 2004.
doi:10.1140/epjb/e2004-00370-y

11. Yeh, P. and A. Yariv, "Optical waves in crystals," Wiley Series in Pure and Applied Optics, 589, Wiley-Interscience, New York, 1984.

12. De Medeiros, F. F., E. L. Albuquerque, and M. S. Vasconcelos, "Optical transmission spectra in quasiperiodic multilayered photonic structure," J. Phys. Cond. Matt., Vol. 18, No. 39, 8737, 2006.
doi:10.1088/0953-8984/18/39/006

13. Nava, R., J. Taguena-Martinez, J. A. Del Rio, and G. G. Naumis, "Perfect light transmission in Fibonacci arrays of dielectric multilayers," J. Phys.: Cond. Matt., Vol. 21, No. 15, 155901, 2009.
doi:10.1088/0953-8984/21/15/155901