Vol. 46
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-01-18
2D and 3D Far-Field Radiation Patterns Reconstruction Based on Compressive Sensing
By
Progress In Electromagnetics Research M, Vol. 46, 47-56, 2016
Abstract
The measurement of far-field radiation patterns is time consuming and expensive. Therefore, a novel technique that reduces the samples required to measure radiation patterns is proposed where random far-field samples are measured to reconstruct two-dimensional (2D) or three-dimensional (3D) far-field radiation patterns. The proposed technique uses a compressive sensing algorithm to reconstruct radiation patterns. The discrete Fourier transform (DFT) or the discrete cosine transform (DCT) are used as the sparsity transforms. The algorithm was evaluated by using 3 antennas modeled with the High-Frequency Structural Simulator (HFSS) --- a half-wave dipole, a Vivaldi, and a pyramidal horn. The root mean square error (RMSE) and the number of measurements required to reconstruct the antenna pattern were used to evaluate the performance of the algorithm. An empirical test case was performed that validates the use of compressive sensing in 2D and 3D radiation pattern reconstruction. Numerical simulations and empirical tests verify that the compressive sensing algorithm can be used to reconstruct radiation patterns, reducing the time and number of measurements required for good antenna pattern measurements.
Citation
Berenice Verdin, and Patrick Debroux, "2D and 3D Far-Field Radiation Patterns Reconstruction Based on Compressive Sensing," Progress In Electromagnetics Research M, Vol. 46, 47-56, 2016.
doi:10.2528/PIERM15110306
References

1. Hansen, J. E., Spherical Near-field Antenna Measurement, The Institution of Engineering and Technology, 1988.
doi:10.1049/PBEW026E

2. D’Agostino, F., F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, "Far-field reconstruction from a minimum number of spherical spiral data using effective antenna modelings," Progress In Electromagnetics Research B, Vol. 37, 43-58, 2012.
doi:10.2528/PIERB11072707

3. Farouq, M., M. Serhir, and D. Picard, "Matrix method for far-field calculation using irregular near-field samples for cylindrical and spherical scanning surfaces," Progress In Electromagnetics Research B, Vol. 63, 35-48, 2015.
doi:10.2528/PIERB15040905

4. Romberg, J., "Imaging via compressive sampling," IEEE Antennas Propag. Mag., Vol. 25, No. 2, 14-20, 2008.

5. Trzasko, J., A. Manduca, and E. Borisch, "Highly under sampled magnetic resonance image reconstruction via homotopic ell-0-minimization," IEEE Trans. Med. Imag., Vol. 28, No. 1, 106-121, 2009.
doi:10.1109/TMI.2008.927346

6. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," IEEE Radar Conf., Waltham, Massachusetts, 2007.

7. Carin, L., D. Liu, and B. Gua, "In situ compressive sensing," IEEE Science Inverse Problems, Vol. 24, 2008.

8. Giordanengo, G., M. Righero, F. Vipiana, G. Vecchi, and M. Sabbadini, "Fast antenna testing with reduced near field sampling," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2501-2513, 2014.
doi:10.1109/TAP.2014.2309338

9. Verdin, B. and P. Debroux, "Reconstruction of missing sections of radiation patterns using compressive sensing," IEEE International Symposium, 780-781, 2015.

10. Baraniuk, R., "Compressive sensing," IEEE Signal Process. Mag., Vol. 24, 118-121, 2007.
doi:10.1109/MSP.2007.4286571

11. Candes, E. J., T. Tao, and J. Romberg, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. on Inf. Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

12. Candes, E. J. and T. Tao, "Near optimal signal recovery from random projections: Universal encoding strategies?," IEEE Trans. on Inf. Theory, Vol. 52, No. 12, 5406-5425, 2006.
doi:10.1109/TIT.2006.885507

13. Fornasier, M. and H. Rauhut, "Compressive sensing," Handbook of Mathematical Methods in Imaging, 187-228, 2010.

14. Rauhut, H., "Compressive sensing and structural random matrices," Theoretical Foundations and Numerical Methods for Sparse Recovery, 1-91, 2010.

15. Fang, H., S. S. Vorobyov, H. Jiang, and O. Taheri, "Permutation meets parallel compressed sensing: How to relax restricted isometry property for 2D sparse signals," Proc. Inst. Elect. Eng. 12th Int. Conf. Antennas Propagation ICAP, 751-744, 2003.