Vol. 47
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-04-02
Device-Free Electromagnetic Passive Localization with Frequency Diversity
By
Progress In Electromagnetics Research M, Vol. 47, 129-139, 2016
Abstract
As an emerging wireless localization technique, the electromagnetic passive localization without the need of carrying any device, named device-free passive localization (DFPL) technique has drawn considerable research attentions. The DFPL technique detects the shadowed links in the monitored area and realizes localization with the received signal strength (RSS) measurements of these links. However, the current RSS-based DFPL techniques have two major challenges: one is that the RSS signal is particularly sensitive to noise and another one is that it needs the large number of nodes to provide enough RSS measurements of wireless links to guarantee good performance. To overcome these problems, in this paper we take advantage of compressive sensing (CS) theory to handle the spatial sparsity of the DFPL problem for reducing the number of nodes required by DFPL systems and exploit the frequency diversity technique to deal with the problem of the RSS sensitivity. Meanwhile, inspired by the fact that the target's movement is continuous and the target's current location must be around the last location, we add prior information on the support region into the sparse reconstruction process for enhancing sparse reconstruction performance. The effectiveness and robustness of the proposed scheme are demonstrated by experimental results where the proposed algorithm yields substantial improvement for localization performance.
Citation
Wei Ke, Yanan Yuan, Xiunan Zhang, and Jianhua Shao, "Device-Free Electromagnetic Passive Localization with Frequency Diversity," Progress In Electromagnetics Research M, Vol. 47, 129-139, 2016.
doi:10.2528/PIERM15102502
References

1. Mitilineos, S. A. and S. C. A. Thomopoulos, "Positioning accuracy enhancement using error modeling via a polynomial approximation approach," Progress In Electromagnetics Research, Vol. 102, 49-64, 2010.
doi:10.2528/PIER10010102

2. Mitilineos, S. A., D. M. Kyriazanos, O. E. Segou, J. N. Goufas, and S. C. A. Thomopoulos, "Indoor localization with wireless sensor networks," Progress In Electromagnetics Research, Vol. 109, 441-474, 2010.
doi:10.2528/PIER10062801

3. Patwari, N. and J. Wilson, "RF sensor networks for device-free localization: Measurements, models, and algorithms," Proc. of the IEEE, Vol. 98, No. 11, 1961-1973, 2010.
doi:10.1109/JPROC.2010.2052010

4. Youssef, M., M. Mah, and A. Agrawala, "Challenges: Device-free passive localization for wireless environments," 13th ACM MobiCom., 222-229, 2007.

5. Sabek, I., M. Youssef, and A. V. Vasilakos, "ACE: An accurate and efficient multi-entity device-free WLAN localization system," IEEE Transactions on Mobile Computing, Vol. 14, No. 2, 261-273, 2015.
doi:10.1109/TMC.2014.2320265

6. Zhang, D., J. Ma, Q. Chen, and L. M. Ni, "An RF-based system for tracking transceiver-free objects," Proc. 5th PerCom., 135-144, 2007.

7. Zhang, D., K. Lu, R. Mao, Y. Feng, Y. Liu, Z. Ming, and L. Ni, "Fine-grained localization for multiple transceiver-free objects by using RF-based technologies," IEEE Trans. Parallel Distrib. Syst., Vol. 25, No. 6, 1464-1475, 2014.
doi:10.1109/TPDS.2013.243

8. Wilson, J. and N. Patwari, "Radio tomographic imaging with wireless networks," IEEE Transactions on Mobile Computing, Vol. 9, No. 5, 621-632, 2010.
doi:10.1109/TMC.2009.174

9. Kaltiokallio, O., M. Bocca, and N. Patwari, "A fade level-based spatial model for radio tomographic imaging," IEEE Transactions on Mobile Computing, Vol. 13, No. 5, 1159-1172, 2014.

10. Kanso, M. A. and M. G. Rabbat, "Compressed RF tomography for wireless sensor networks: Centralized and decentralized approaches," Proc. 5th DCOSS, 173-186, 2009.

11. Yang, Z. Y., K. D. Huang, X. M. Guo, and G. L. Wang, "A real-time device-free localization system using correlated RSS measurements," EURASIP J. Wireless Commu. Netw., Vol. 2013, No. 186, 1-12, 2013.

12. Wang, J., Q. Gao, X. Zhang, and H. Wang, "Device-free localization with wireless networks based on compressing sensing," IET Commun., Vol. 6, No. 15, 2395-2403, 2012.
doi:10.1049/iet-com.2011.0603

13. Ke, W., G. Liu, and T. Fu, "Robust sparsity-based device-free passive localization in wireless networks," Progress In Electromagnetics Research C, Vol. 46, 63-73, 2014.
doi:10.2528/PIERC13101301

14. Kaltiokallio, O., M. Bocca, and N. Patwari, "Enhancing the accuracy of radio tomographic imaging using channel diversity," Proc. 9th IEEE Int. Conf. MASS, 254-262, 2012.

15. Hamilton, B. R., X. L. Ma, R. J. Baxley, and S. M. Matechik, "Propagation modeling for radio frequency tomography in wireless networks," IEEE J. Sel. Topics Signal Process, Vol. 8, No. 1, 43-54, 2014.
doi:10.1109/JSTSP.2013.2287471

16. Zhao, Y. and N. Patwari, "Demo abstract: Histogram distance-based radio tomographic localization," Proc. 11th ACM/IEEE Int. Conf. IPSN, 129-130, 2012.

17. Candès, E. J. and M. B. Waki, "An introduction to compressive sampling," IEEE Signal Process. Mag., Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731

18. Miosso, C. J., R. Von Borries, and J. H. Pierluissi, "Compressive sensing with prior information: Requirements and probabilities for reconstruction in l1-minimization," IEEE Trans Signal Process., Vol. 61, No. 9, 2150-2164, 2013.
doi:10.1109/TSP.2012.2231076

19. Scarlett, J., J. S. Evans, and S. Dey, "Compressed sensing with prior information: information-theoretic limits and practical decoders," IEEE Trans. Signal Process., Vol. 61, No. 2, 427-439, 2013.
doi:10.1109/TSP.2012.2225051