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Device-Free Electromagnetic Passive Localization
with Frequency Diversity

Wei Ke1, 2, Yanan Yuan1, Xiunan Zhang1, and Jianhua Shao1, *

Abstract—As an emerging wireless localization technique, the electromagnetic passive localization
without the need of carrying any device, named device-free passive localization (DFPL) technique has
drawn considerable research attention. The DFPL technique detects shadowed links in the monitored
area and realizes localization with the received signal strength (RSS) measurements of these links.
However, the current RSS-based DFPL techniques have two major challenges: one is that the RSS
signal is particularly sensitive to noise, and the other is that it needs a sufficient number of nodes to
provide enough RSS measurements of wireless links to guarantee good performance. To overcome these
problems, in this paper we take advantage of compressive sensing (CS) theory to handle the spatial
sparsity of the DFPL problem for reducing the number of nodes required by DFPL systems and exploit
the frequency diversity technique to deal with the problem of the RSS sensitivity. Meanwhile, inspired by
the fact that the target’s movement is continuous and that the target’s current location must be around
the last location, we add prior information on the support region into the sparse reconstruction process
for enhancing sparse reconstruction performance. The effectiveness and robustness of the proposed
scheme are demonstrated by experimental results where the proposed algorithm yields substantial
improvement for localization performance.

1. INTRODUCTION

Due to potential promising commercial and military application, wireless localization and tracking
have gained considerable attention over the past decade. The research area can be divided into active
and passive localization. While the active localization technique [1, 2] that equips the target with a
wireless device such as a smartphone or a RFID tag has been widely studied, the passive localization
technique, which could realize device-free localization, is still an emerging and challenging technique.
In recent years, the low-cost DFPL which only utilizes RSS measurements of wireless links has become
an attractive technology and shown enormous promise in applications ranging from intrusion detection
to elder care [3, 4]. Compared with the existing device-free techniques such as infrared detector, video
monitor and UWB radar detector, RSS-based DFPL brings several advantages over other technologies by
being able to work in obstructed environments, see through smoke, darkness, and walls, while avoiding
the privacy concerns raised by video cameras.

The basic principle of RSS-based DFPL is that when a target moves into the area within a wireless
network, it may cause the changes of RSS by shadowing, reflecting, diffracting, or scattering. The
shadowed links will be different when the target is locate at different locations, and this makes it possible
to realize DFPL based on the link measurements [3–9]. Different from that the line-of-sight (LOS) path
is dominant in an open outdoor environment, multipath is common in an indoor environment, and
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thus the change in RSS due to target presence becomes unpredictable. In addition, the current DFPL
techniques require that there should be the large number of nodes to provide sufficient wireless links,
and otherwise DFPL techniques sometimes cannot achieve reasonable performance. However, in many
DFPL applications, only a modest or even small set of nodes can be used due to space restriction or
the requirement of rapid deploy. In this paper, we try to solve the above problem from two aspects.
First, we take advantage of the sparse nature of location finding in the spatial domain to realize DFPL
for reducing the number of nodes required by DFPL systems. Second, motivated by the fact that most
of the commercial transceivers have the ability to change the frequency, we propose to utilize frequency
diversity scheme to combine the data collected on multiple frequencies for overcoming the problem of
the RSS sensitivity.

The remainder of the paper is organized as follows. Section 2 presents the related works. Section 3
analyzes the feasibility of frequency diversity in DFPL, and then describes the system model and
problem formulation. In Section 4, we propose a novel CS reconstruction method by utilizing the prior
information on the support region to improve reconstruction performance. Experimental results are
given in Section 5. Finally, Section 6 concludes the paper.

2. RELATED WORKS

In this section, we summarize the most relevant research on DFPL. The early exploration of DFPL was
performed independently and almost synchronously by Youssef et al. [4, 5] and Zhang et al. [6, 7]. Zhang
et al. [6, 7] presented a geometric method, and adopted the dynamic cluster-based algorithm to solve
the DFPL problem. They also proposed a real-time and scalable system for realizing DFPL, where
they divided the tracking field into areas and used the support vector regression model to locate the
target in each area. These works proved the feasibility of utilizing wireless link information to realize
DFPL. In parallel, references [4, 5] modeled the DFPL problem as a machine learning problem and
realized DFPL with a fingerprint-matching method. As the fingerprinting method used in the device-
dependent localization system, this method need build an offline radio map by placing the target at
every possible location and store the wireless link measurements. However, the training measurements
increase exponentially with the increase of the number of wireless links and targets. In addition, this
method is also environment dependent and any significant change on the topology implies a costly new
recalibration. Another approach to RSS-based DFPL named radio tomographic imaging (RTI) [8, 9],
estimates the changes in the radio frequency (RF) propagation field of the monitored area and then
forms an image of the changed field. This image is then used to infer the locations of targets within
the deployed network. The drawback of RTI-based systems is that information can be lost in the two-
step process [9]. Moreover, the sufficient number of nodes is required to achieve high-accuracy imaging
results, such as 28 nodes in [8] and 30 nodes in [9].

Due to its excellent performance in sparse reconstruction, CS has been widely applied to realize
wireless localization problem. However, most CS-based localization researches concentrated on device-
dependent methods, and few works adopted the CS method to realize DFPL [10–12]. To the best of
our knowledge, Kanso and Rabbat carried out the first sparsity-based work to combine RF tomography
and CS to solve the DFPL problem [10]. They used the l1 norm minimization scheme to estimate the
location of the target and achieved better performance than the regularization method. In [11, 12],
the greedy algorithms were used to estimate targets’ positions in DFPL systems, which results in
a substantial reduction of the amount of measurements. The reference [13] exploited the dictionary
learning technique to adjust the basis matrix in order to compensate the inaccuracy of the basis matrix.

Despite having made a mighty advance in DFPL, deriving a target’s location by exploiting RSS
changes is still a challenging problem. One vital challenge for the RSS-based DFPL comes from the
noise sensitive nature of the RSS, and a slight variation of the environment will cause the variations
of RSS measurements. Moreover, many experiments have demonstrated that in the cluttered indoor
environment, a number of factors affect the RF signal propagation including multi-path, channel fading,
temperature and humidity variations, etc. Therefore, in many DFPL applications the presence of people
is not the only factor affecting the propagation of radio signals. On the other hand, most DFPL methods
require the sufficient number of nodes to provide enough wireless links traveling through the deployment
area. But these methods are inefficient and sometimes even infeasible, since in many situations only a



Progress In Electromagnetics Research M, Vol. 47, 2016 131

modest set of wireless nodes is available.
To overcome the above limitation, we propose a new scheme to combine the frequency diversity

technique and CS theory into a unified DFPL system. This novel method can make use of link
information of multiple channels simultaneously to reduce the impact of the RSS sensitivity based
on the fact that the influence of the noise for different channels is also different. Moreover, with link
measurement information increased, the localization performance of DFPL can also be improved without
increasing the number of nodes in the wireless networks.

3. PROBLEM FORMULATION

In this section, we first analyzes the feasibility of frequency diversity in DFPL, and then describes the
system model and problem formulation under the multi-frequency (MF) condition.

3.1. Feasibility of the MF-DFPL System

Nowadays, most DFPL systems make use of the low-power IEEE 802.15.4-compliant radio devices in
the 2.4GHz band. The IEEE 802.15.4 standard specifies 16 channels within the 2.4GHz band. They
are numbered from 11 through 26 and are 5MHz apart, having a 2MHz bandwidth. This provides the
technical basis to use RSS measurements from multiple channels to enhance the localization accuracy.

To verify the feasibility of the proposed scheme, an example multi-channel RSS measurement is
shown in Figs. 1(a) and (b). From Fig. 1(a), we can obviously find that the architecture of the MF-DFPL
is nearly the same as that of the traditional single-frequency (SF) DFPL, except that the wireless links
are made up of links working in different frequencies. The detailed protocol for realizing MF-DFPL
will be presented in the Section 5. In the experiment the wireless link from nodes 5 to 15 was selected
as the testing link and a human moved in between the transmitter and receiver at sample n = 65 and
then stood on the location (1.5m, 3.0m) statically. Thus, we tested the link measurements with and
without a person (target), respectively. The variations of the RSS measurements on three different
frequency channels at the 2.4GHz band are shown in Fig. 1(b). From Fig. 1(b), we can find that the
RSS measurements vary considerably on the different channels. On the channel with highest average
RSS (#17), the person’s effect is to reduce the RSS; while on the channel #23, the effect is to increase
the RSS. In particular, the mean of the RSS on the channel #11 varies very small but the variance of
the RSS significantly varies on channel #11. This phenomenon shows that the influence of the noise
for different channels is also different. Motivated by this fact, Kaltiokallio et al. [14] proposed two
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Figure 1. (a) Illustration of the link measurement. (b) RSS measurements on three different frequency
channels.
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schemes to select the best channel from the available channels to perform the wireless measurement
task. Different from channel selection method in [14], in this paper we adopt the CS-based data fusion
approach to combine the data collected on multiple channels. Thus, we can exploit the complementary
character of multi-channel RSS measurements to enhance localization performance.

3.2. System Model and Problem Formulation

Consider P unknown-location targets located in an area of interest, which is divided into N square
grids. Suppose that Q wireless nodes consist of a wireless network, and each node can work on F
independent frequencies. For the SF-DFPL, there will be M = Q× (Q− 1)/2 wireless links with every
pair of nodes counted as a link, whether or not communication actually occurs between them. However,
for the MF-DFPL, there will be C = M × F virtual wireless links with every pair of nodes working on
a specific frequency counted as a link.

So far, the shadowing model is the most widely adopted model to approximate the signal
propagation character [8, 15]. With the shadowing model, the measurements Rt(i, f) of link i on the
frequency f at time t is described as

Rt(i, f) = Pt(i, f)− Lt(i, f)− St(i, f)−Dt(i, f)− vt(i, f) (1)

where Pt(i, f) is the transmitted power in dBm, Dt(i, f) the fading loss in decibels, and Lt(i, f) the
static losses in decibels due to distance, antenna patterns, device inconsistencies, etc. Generally, these
parameters are almost steady and time invariant. St(i, f) is the shadowing loss in decibels due to
objects that attenuate the signal, and vt(i, f) is the measurement noise. At time t, the change of the
RSS measurement ∆Rt(i, f) is

∆Rt(i, f) = Rt(i, f)−R0(i, f) ≈ −St(i, f)− vt(i, f) + v0(i, f) (2)

where R0(i, f) is the reference RSS measurement that can be learned offline from the link measurements
when the deployment area is vacant or that can be learned online with the method proposed in [16].
Generally, measurement noises vt(i, f) and v0(i, f) are negligible compared with the shadowing loss.
Hence, ∆Rt(i, f) is primarily determined by the shadowing loss at time t.

Since the deployment area is divided into many grids, the shadowing loss can be approximated as
the sum of attenuation that occurs in each square [8–12], hence, ∆Rt(i, f) can be written as

∆Rt(i, f) =

N∑
j=1

wijxt(j) + nt(i, f) (3)

where xt(j) is the difference of attenuation at grid j which corresponds to the fact that whether a
target is located in the jth square at time t. xt(j) will be a significant nonzero value when a target
is located at grid j, and in this case, the location of the target is mapped to the value of xt(j).
nt(i, f) = −vt(i, f) + v0(i, f) is the measurement noise, and wij is the weight that represents the
contribution of grid j for link i. According to the past studies, the ellipsoid model with foci at each
node location can be used as a method for determining the approximate weight for each link in the
network [8, 15]. As a consequence, the weight can be described as

wij(f) =
1√
di

{
1, if dij1 + dij2 < di + ρ

0, otherwise
(4)

where dij1 and dij2 are the distances from the center of square grid j to the two nodes of link i at
frequency f ; di is the distance between two nodes of link i; ρ represents the width of the ellipse.

When all links in the network are considered simultaneously, the system of RSS measurements can
be described in matrix form as

∆Rt = Wxt + nt (5)

where ∆Rt is a C × 1 vector that is the changes of the RSS measurements; xt = [xt(1), . . . , xt(N)]T

is a N × 1 location information vector to be estimated; the C × 1 vector nt represents noise terms.
W = [WT (f1) WT (f2) . . .W

T (fF )]
T is the C × N weighting matrix, in which each M × N matrix

W(fk), 1 ≤ k ≤ F represents the weighting matrix at frequency fk that can be calculated by Eq. (4).
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According to the above analysis, the primary objective of the MF-DFPL is to obtain the location
vector xt from the observations Rt. However, Eq. (5) is usually an ill-posed problem as the condition
C ≥ N is not always met with a modest set of wireless nodes. Since CS theory is good at solving the
underdetermined problem, we will solve this problem with a CS reconstruction algorithm proposed in
the following.

4. CS RECONSTRUCTION ALGORITHM WITH PRIOR INFORMATION

Generally, there are a small number of targets or even only one target within the deployment area in
DFPL applications. Therefore, the number of targets, P , is considerably smaller than the number of
grids N based on sufficient dense gridding, and thus the location information vector xt is an extremely
sparse signal. Inspired by this fact, references [10–12] attempted to utilize CS theory to tackle the
DFPL problem, which leads to

argmin
xt

∥xt∥1 , s.t.∆Rt = Wxt (6)

where ∥ • ∥1 represents the l1 norm. This problem is an ordinary sparse coding problem and many
algorithms have been proposed [17]. However, the recent CS researches reveal that the use of the
additional prior information about the sparse representation’s support is shown to have advantages
in terms of number of required measurements, convergence time and number of iterations [18, 19].
Nonetheless, in DFPL applications this information is not easy to be obtained, since the target to
be tracked is generally uncooperative. Moreover, not only are the speed and direction of the target
unknown, but also the accurate motion model of the target is unavailable in most cases. The only
information about the target available to a DFPL system is its previous location estimate and the
assumption that the target’s maximum speed is below a threshold umax. To make the algorithm as
universal as possible, the prior region St is defined as a circle centered on the previous location estimate

St = {j|H(pt−1,qj) < r, j = 1, . . . , N} (7)

where pt−1 is the previous location estimate, qj the coordinate of a central point of the jth square,
H(pt−1,qj) the Euclidean distance between the locations pt−1 and qj , and r the radius of the circular
prior region. The radius r of the prior region is dependent on the maximum distance that the target can
travel in the time between sampling instants ∆t, i.e., r > umax × t. As shown in Fig. 2, the prior region
essentially defines the section of the deployment area where the target is most likely to be located next.
It must be noted that for t = 1, since p0 is unknown, the radius r is set to a large enough value such
that no grids are ignored.

The predicted support set St contains the prior information and indicates which grids the target
is more likely located at. When this prior information can be utilized, the sparse recovery problem in
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Eq. (6) is modified as:

min
xt

N∑
k=1
k/∈St

|xt(k)|, s.t. ∆Rt = Wxt (8)

Note that model in Eq. (8) does not penalize the terms whose indices are in the prior region St, which
differs from the model in Eq. (6) where all terms are treated. Now, in order to solve Eq. (8), we propose
a weighted basis pursuit (WBP) method for sparse signal recovery with prior information. The idea
of this method is to introduce weights dependent on the prior information on the positions of nonzero
coefficients in the sparse domain into the traditional basis pursuit (BP) algorithm, so that nonzero
coefficients in the prior region are favored. Motivated by iteratively reweighted idea in [18, 19], the
sparse vector xt can then be reconstructed from the measurements ∆Rt by solving

min
xt

N∑
k=1

α
(m)
k |xt(k)|, s.t. ∆Rt = Wxt (9)

where α
(m)
k is the weighting value to be used in the mth iteration, which is defined

α
(m)
k =


∣∣∣x(m−1)

t (k)
∣∣∣ , if k /∈ St

β
∣∣∣x(m−1)

t (k)
∣∣∣ , otherwise

(10)

where β is a specified small constant, and x
(m−1)
t (k) is the (m − 1)th iterate in grid k at time t. Note

that for β = 0, the second expression in Eq. (10) reduces to 0. It may be more reasonable to match the
definition of the prior region, but β = 0 may result in divergence in the iterative process. Therefore, a
small β > 0 is necessary for obtaining a feasible solution, and we used β = 0.001 in our experiments.
In summary, the sparse representation xt can be reconstructed from measurements ∆Rt by solving (9)
for m = 1, 2, . . ., until convergence.

5. EXPERIMENTAL RESULTS

5.1. Physical Description of the Experiment

To evaluate the performance of the proposed algorithm, we performed extensive experiments based on
a modest wireless network containing 16 nodes in an uncluttered indoor area. A photograph and a
map of the experimental setup are shown in Fig. 3. Sixteen wireless nodes are placed 1.5m apart at
the perimeter of a 6m × 6m area, and each node is 0.9m off the ground on a tripod. In addition, a
base-station node listens to all broadcasts from the perimeter nodes and logs the RSS information to a
mobile computer with 3.1GHz processor and 4GB memory for real-time processing.

The transceivers of the nodes are system-on-chip (SoC) CC2530 devices, and each node can work
in 16 different frequencies, from 2405 to 2480MHz with 5MHz apart. In our experiments, we selected
three frequencies (2405, 2435 and 2465MHz) to realize the MF-DFPL. To avoid network transmission
collisions, the whole network is coordinated by the base-station node, and a simple token ring protocol
is used to control transmission. Each node is assigned an ID number and programmed with a known
order of transmission. After receiving the frequency parameters from the base-station node, the normal
nodes begin to perform network scanning. Each node transmits the RSS measurements in turn, and
at the same time all the other nodes receive the signal and measure the corresponding RSS values.
When one cycle of measurement at one frequency ends, all the nodes in the DFPL system switch to
the next frequency under the control of the base-station node. In our tests, it takes 3ms for each node
to broadcast a message, and it takes 48ms for all the 16 nodes to perform one cycle of measurement.
When three frequencies are adopted, the scanning time will be 144ms.

To obtain the baseline RSS, measurements were taken for 60s while the single human target is
outside the deployment area. Afterwards, a target walked inside the deployment area along a predefined
trajectory. The default parameters are as follows: grid size is 0.25m × 0.25m, the number of grids
N = 576, width of the ellipse ρ = 0.3m, radius of prior region r = 1.0m and true speed of the target
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about 0.5m/s. The tracking error is defined as the distance between the known true target location and
the estimated location obtained by each algorithm. To achieve reliable results, all the statistical results
are the average of 50 repeated experiments with independent measurement data for high confidence.

5.2. Performance Analysis and Comparison

The tracking trajectories along the predefined path obtained by the SF-WBP and MF-WBP methods are
shown in Fig.? 4, respectively. Although both schemes adopt the WBP algorithm with prior information
to realize DFPL estimation, it is shown that the performance of the MF-DFPL is significantly better
than the SF-DFPL. Moreover, Fig. 4 also indicates that the tracking errors in the four corners are
relatively larger than the others. This phenomenon is mainly due to the fact that when the target
changes direction, some transient error will occur while the variations of wireless links traveling through
the target are abrupt and discontinuous. Fig. 5 shows the MF-DFPL performance with different numbers
of grids N and different widths of the ellipse ρ. We can see that ρ should be a relatively large value to
guarantee that the width of the ellipse is wide enough to represent the shadowing effect of the target.
As for N , we can see that a larger N will enable the algorithm to achieve better performance. However,
the computational complexity of the localization algorithms will increase dramatically with the increase
in the number of grids. Hence, N should be a moderate value.

Then, we compare the proposed method with two state-of-the-art CS-based DFPL schemes, i.e.,
the l1 norm minimization algorithm in [10] and the greedy-based CMMS algorithm in [11] under the
same conditions. Table 1 summarizes detailed statistical results of tracking errors of the SF-DFPL and
MF-DFPL with different algorithms. We can find that due to the full utilization of the space-domain
prior information of the location vector, the proposed WBP algorithm achieves better performance
than the other algorithms. Compared with that of the l1 and CMMS algorithms in the MF-DFPL,
the mean tracking error of the WBP algorithm reduces by 31.8% and 41.4%, respectively. Meanwhile,
we can see that although the median values of the tracking errors in three schemes are all less than
0.80m, the WBP approach has significantly better performance than the other two methods in terms
of standard deviation. Moreover, we can see that the performance of the MF-DFPL is better than
the traditional SF-DFPL. With the same WBP, l1 and CMMS algorithms, the mean tracking error of
the MF-DFPL reduces by 33.3%, 30.3%, and 27.2%, respectively. The complexity is also compared in
terms of the CPU running time from Table 1, which shows that the average running times of the WBP
algorithm and l1 algorithm are almost identical. Although the running time of the WBP method is
larger than the CMMS algorithm, this slight growth of complexity is totally acceptable considering the
large performance gain that the proposed method achieves.

Furthermore, we evaluate the proposed DFPL scheme under different parameters to analyze its
performance. The performance of the proposed scheme with different radius of the circular prior region
is shown in Fig. 6. We can see that when r is small, the tracking error is large. As defined by Eq.
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Table 1. Comparisons of localization error and average running time.

Algorithm Average (m) Median (m) Standard Deviation (m) Running Time (ms)

SF-l1 1.22 0.98 0.82 90.55

SF-CMMS 1.36 1.23 1.01 27.83

SF-WBP 0.87 0.72 0.56 95.67

MF-l1 0.85 0.69 0.61 191.79

MF-CMMS 0.99 0.80 0.75 75.18

MF-WBP 0.58 0.52 0.33 198.15
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(7), the predicted support set St is primarily determined by r. When r is too small, the target will
move outside the support set, which leads to misuse of the prior information and then unsatisfactory
localization performance. On the other hand, when r is too large, there will be little prior information
involved in the prediction operation, and the performance will also drop. Fig. 7 demonstrates the
performance with different numbers of frequencies. In addition to the current three frequencies (2405,
2435, and 2465MHz), we added channel #13 (2415MHz) and channel #26 (2480MHz) into MF-DFPL
experiments. It is shown that the tracking error reduces gradually with the increase in the number of
frequencies, which confirms the effectiveness of the proposed frequency diversity scheme. Meanwhile, we
can see that the performance improvement will become less obvious when more frequencies are utilized.
This is due to the fact that with the increase in the number of frequencies, the diversity effect will
become increasingly inconspicuous.

5.3. Performance in the Heavily Obstructed Indoor Environment

To demonstrate the applicability of the proposed method in rich multipath scenarios, we also carried
out an experiment in a highly cluttered indoor environment where many tables and instruments are
available. Photos and a map of the experimental setup are shown in Fig. 8. Twelve wireless nodes were
deployed to form a 6m× 6m area, where nodes were located on two sides of square area. The default
parameters are the same as the earlier experiments, except that the nodes are placed 1.2m apart.

Table 2. Comparisons of localization error and average running time under challenging conditions.

Algorithm Average (m) Median (m) Standard Deviation (m) Running Time (ms)

SF-l1 1.37 1.18 0.95 90.76

SF-CMMS 1.62 1.39 1.22 27.80

SF-WBP 0.98 0.85 0.73 96.23

MF-l1 1.02 0.89 0.77 192.51

MF-CMMS 1.23 1.06 0.93 75.29

MF-WBP 0.76 0.63 0.58 198.55

Table 2 summarizes the detailed statistical tracking results of 50 trials with different algorithms.
It is seen from Table 2 that with a modest number of nodes, the SF-WBP algorithm can still track the
target with 1m average accuracy, even in the presence of multiple obstructions in the deployment area.
For comparison, the average errors for SF-l1 and SF-CMMS are 137m and 1.62m, respectively. We
can also find that the WBP approach has significantly better performance than the other two methods
in terms of standard deviation under the complex indoor experiment. Meanwhile, we can see that
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the multi-frequency scheme can improve the location estimation performance significantly in the rich
multipath environment.

6. CONCLUSION

To achieve satisfactory localization and tracking results in the indoor environment using the modest
set of wireless nodes, a novel DFPL scheme which utilizes the multiple channels information has been
proposed. Inspired by the thought of diversity widely adopted in wireless communications and the
fact that the influence of the noise for different channels is also different, we combined the frequency
diversity technique and CS theory into a unified DFPL framework. This method can not only take
advantage of CS to handle the inherent spatial sparsity of the DFPL problem in the spatial domain,
but also make use of link information of multi-channel simultaneously to reduce the impact of the RSS
sensitivity. Furthermore, based on the fact that the location information of the target is not only sparse
but also changes continuously over time, we proposed a particular CS reconstruction method by utilizing
the prior information on the support region obtained from last target’s location estimation to improve
sparse reconstruction performance. The effectiveness of the proposed scheme has been demonstrated
by experimental results where substantial improvement for localization performance is achieved with a
few nodes. Future work will emphasize the theoretic bound on the location estimation precision and
extend the proposed algorithm for use in multi-target tracking.
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