Vol. 57
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-10-22
Numerical Dispersion Analysis for the 3-d High-Order WLP-FDTD Method
By
Progress In Electromagnetics Research Letters, Vol. 57, 73-77, 2015
Abstract
In this paper, a theoretical analysis of numerical dispersion of the three-dimensional (3-D) high-order finite-difference time-domain (FDTD) method with weighted Laguerre polynomials (WLPs) is presented. The phase velocity of numerical wave modes is relevant to the direction of wave propagation, grid discretization and time-scale factor. The formula to determine a suitable time-scale factor is derived. By a theoretical evaluation, the dispersion errors for the 3-D high-order WLP-FDTD scheme with different time-scale factors are obtained. Finally, one numerical example is included to validate the effectiveness of the theoretical solution of the time-scale factor.
Citation
Wei-Jun Chen, Jun Quan, and Shi-Yu Long, "Numerical Dispersion Analysis for the 3-d High-Order WLP-FDTD Method," Progress In Electromagnetics Research Letters, Vol. 57, 73-77, 2015.
doi:10.2528/PIERL15092003
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2005.

2. Chung, Y. S., T. K. Sarkar, B. H. Jung, and M. Salazar-Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. on Microwave Theory and Technique, Vol. 51, No. 3, 697-704, 2003.
doi:10.1109/TMTT.2003.808732

3. Duan, Y.-T., B. Chen, and Y. Yi, "Efficient Implementation for the unconditionally stable 2-D WLP-FDTD method," IEEE Microwave and Wireless Component Letters, Vol. 19, No. 11, 677-679, 2009.
doi:10.1109/LMWC.2009.2031995

4. Duan, Y. T., B. Chen, D.-G. Fang, and B.-H. Zhou, "Efficient implementation for 3-D Laguerre-based finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 1, 56-64, Jan. 2011.
doi:10.1109/TMTT.2010.2091206

5. He, G.-Q., W. Shao, X.-H. Wang, and B.-Z. Wang, "An efficient domain decomposition Laguerre-FDTD method for two-dimensional scattering problems," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2639-2645, May 2013.
doi:10.1109/TAP.2013.2242836

6. Alighanbari, A. and C. D. Sarris, "An unconditionally stable Laguerre-based S-MRTD time-domain scheme," IEEE Antennas Wireless Propag. Lett., Vol. 5, 69-72, 2006.
doi:10.1109/LAWP.2006.870364

7. Profy, F. and Z. Chen, "Efficient mixed-order FDTD using the Laguerre polynomials on non-uniform meshes," IEEE/MTT-S International Microwave Symposium, 1967-1970, Jun. 2007.

8. Duan, Y.-T., B. Chen, D.-G. Fang, B.-H. Zhou, and , "Efficient implementation for 3-D Laguerre-based finite-difference time-domain method," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 56-64, Jan. 2011.

9. Chen, W.-J., W. Shao, J.-L. Li, and B.-Z. Wang, "Numerical dispersion analysis and key parameter selection in Laguerre-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 12, 629-631, Dec. 2013.
doi:10.1109/LMWC.2013.2283866

10. Chen, Z., Y. T. Duan, Y. R. Zhang, and Y. Yi, "A new efficient algorithm for the unconditionally stable 2-D WLP-FDTD method," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3712-3720, Jul. 2013.
doi:10.1109/TAP.2013.2255093

11. Gustafsson, B., High Order Difference Methods for Time Dependent PDE, Springer, 2008.

12. Chen, W.-J., J. Quan, and S.-Y. Long, "Analysis of numerical dispersion in the high-order 2-D WLP-FDTD method," Progress In Electromagnetics Research Letters, Vol. 55, 7-13, 2015.
doi:10.2528/PIERL15051204

13. Kantartzis, N. V. and T. D. Tsiboukis, Higher Order FDTD Schemes for Waveguide and Antenna Structures, Morgan and Claypool, 2006.