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Numerical Dispersion Analysis for the 3-D High-Order
WLP-FDTD Method

Wei-Jun Chen1, *, Jun Quan2, and Shi-Yu Long1

Abstract—In this paper, a theoretical analysis of numerical dispersion of the three-dimensional
(3-D) high-order finite-difference time-domain (FDTD) method with weighted Laguerre polynomials
(WLPs) is presented. The phase velocity of numerical wave modes is relevant to the direction of wave
propagation, grid discretization and time-scale factor. The formula to determine a suitable time-scale
factor is derived. By a theoretical evaluation, the dispersion errors for the 3-D high-order WLP-FDTD
scheme with different time-scale factors are obtained. Finally, one numerical example is included to
validate the effectiveness of the theoretical solution of the time-scale factor.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method has been widely used for electromagnetic modeling
in the last two decades [1]. However, because of Courant-Friedrich-Levy (CFL) stability constraint, the
conventional FDTD is not very suitable for electromagnetic problems which involve fine grid division. To
eliminate the limitation, an unconditionally stable FDTD method using weighted Laguerre polynomials
(WLPs) has been proposed [2]. This method does not deal with time steps and is more efficient than
the conventional FDTD method when analyzing multiscale structures.

WLP-FDTD leads to a large sparse matrix equation, which is expensive to solve. To overcome
this problem, the factorization-splitting technique [3, 4] and domain decomposition scheme [5] are
implemented in WLP-FDTD. They turn the large sparse matrix into several small ones while keeping the
same number of unknowns. To reduce the number of unknowns, WLP-FDTDs combined with scaling
functions [6] and mixed-order scheme [7] are introduced. With the reduction of the sampling density in
space domain, the produced sparse matrix with a smaller size can result in an efficient solution.

For the high-order WLP-FDTD method with fourth-order central difference in space domain [7], a
numerical dispersion analysis for the 3-D case is presented in this paper. Different from the numerical
dispersion in FDTD only involving the direction of wave propagation and grid discretization, the time-
scale factor s plays an important role in high-order WLP-FDTD and it affects dispersion errors to a
great extent. Resonant frequencies in an air-filled cubic cavity are calculated to show the importance
of correctly choosing the time-scale factor s.

2. NUMERICAL DISPERSION ANALYSIS

For simplicity, assume a linear, isotropic, nondispersive, and lossless medium, the 3-D Maxwell’s
equations in Laguerre-domain can be written as [8]
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where ε and μ are the electric permittivity and magnetic permeability, respectively. s is the time-scale
factor and p is the order of Laguerre functions. Considering the monochromatic wave, we expand Ep

x,
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z , Hp
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z into a discrete set of Fourier modes as follows [9, 10]:{
Ep

x, Ep
y , Ep

z ,Hp
x,Hp

y ,Hp
z |m,n,l

}
=

{
ep
x, ep

y, e
p
z , h

p
x, hp

y, h
p
z

}
ej0(mkΔx sin θ cos ϕ+nkΔy sin θ sinϕ+lkΔz cos θ) (2)

where (m, n, l) denotes the spatial index of a field component; Δx, Δy, and Δz are the spatial
meshing sizes along the x- and y-, and z-axes; j0 =

√−1, k is the wavenumber; θ is the angle between
the propagation direction and z-axis; ϕ is the angle between the propagation direction and xz plane.
Inserting (2) into (1) with the fourth-order central-difference discretization [11, 12], we get
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where Aξ = 27 sin(0.5kξΔξ) − sin(1.5kξΔξ), ξ = x, y, z. Equations (3) can be written in a matrix form
as
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p−1∑

k=0, p>0

Xk (4)



Progress In Electromagnetics Research Letters, Vol. 57, 2015 75

where Xp = [ep
x, ep

y, e
p
z , h

p
x, hp

y , h
p
z]T , Xk = [ek

x, ek
y , ek

z , h
k
x, hk

y , h
k
z ]T and

A =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 a15 −a34

0 1 0 −a15 0 a26

0 0 1 a34 −a26 0
0 −a51 a43 1 0 0

a51 0 −a62 0 1 0
−a43 a62 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦
. Here, a15 = j0Az/(6sεΔz), a34 = j0Ay/(6sεΔy),

a26 = j0Ax/(6sεΔx), a51 = j0Az/(6sμΔz), a43 = j0Ay/(6sμΔy) and a62 = j0Ax/(6sμΔx).
While p = 0, 1, . . . , N − 1, N , where N is the largest order of Laguerre functions, we have⎡

⎢⎢⎢⎢⎢⎢⎣

A 0 0 . . . 0 0 0
−I A 0 . . . 0 0 0
−I −I A . . . 0 0 0
...

...
...

. . .
...

...
...

−I −I . . . −I A 0
−I −I . . . −I −I A

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

X0

X1

X2

...
XN−1

XN

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0 (5)

where I is a 6×6 identity matrix. For a nontrivial solution of homogeneous Equation (5), the determinant
of its coefficient matrix should be zero, thus leading to |A|N+1 = 0. Consequently, it can be derived
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While Δx = Δy = Δz → 0 in (6), we get the theoretical solution of the time-scale factor

s0 = |Im(s)| =
2k√
ε0μ0

= 4πf0 (7)

where f0 is the operating frequency. It can be noticed in (6) that the numerical dispersion of high-order
WLP-FDTD is related to the propagation direction, sampling density in space domain and time-scale
factor. The relative error of the numerical phase velocity can be written as
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where vp is the numerical phase velocity, c is the speed of light in free space, δ = Δx/λ0 = Δy/λ0 =
Δz/λ0 and λ0 is the operating wavelength.

Figure 1 shows the relative errors of the numerical phase velocity of the 3-D high-order WLP-
FDTD method with different s. Compared to low-order WLP-FDTD [9], few grid cells per wavelength
are required in the high-order scheme to obtain acceptable accuracy. From Fig. 1, it is seen that the
time-scale factor s affects dispersion errors to a great extent.

3. NUMERICAL RESULTS

To validate the importance of correctly choosing the time-scale factor s in the high-order scheme,
resonance frequencies of a 3-D air filled cubic cavity with sides equal to 8 cm are calculated. A
sinusoidally modulated Gaussian pulse is used as an incident electric current profile:

Jx(t) = e
−

(
t−Tc

Td

)2

sin [2πfc(t − Tc)] (9)
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Figure 1. Relative error of the numerical phase velocity of high-order WLP-FDTD versus ϕ and θ
with different s. Top panel: δ = 1/6; Middle panel: δ = 1/7; Bottom panel: δ = 1/8.

Table 1. Comparison between different time-scale factors.

TE101 TE111

Solution (MHz) Error (%) Solution (MHz) Error (%)
Analytic 2.6504 — 249.89 —
0.98s0 2.6562 0.22 248.98 1.36
0.99s0 2.6552 0.18 248.98 1.28

s0 2.6548 0.17 249.13 1.23
1.01s0 2.6562 0.22 249.05 1.31
1.02s0 2.6565 0.23 249.03 1.32

where Td = 1/(2fc), Tc = 3Td and fc = 3GHz. We choose the time duration Tf = 6 ns (Tf is defined
in [2]). Assuming the maximum operating frequency fmax = 9GHz, we can obtain s0 = 1.131 × 1011

with (7) and N = 178 from [9]. In this example, uniform cubic cells with Δx = Δy = Δz = 1cm are
used to divide the 3-D space domain.

For high-order WLP-FDTD with different time-scale factor s, Table 1 shows the calculated
resonance frequencies and relative errors. In Table 1, the relative errors are the smallest ones while
the time-scale factor s is chosen as the theoretical solution s0.
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4. CONCLUSION

In this paper, with the fourth-order central difference in space domain, the numerical dispersion of 3-D
high-order WLP-FDTD is analyzed, and the relationship between the time-scale factor and operating
frequency is obtained. The suitable selection of the time-scale factor leads to low numerical dispersion
errors. Moreover, if there exist material interfaces and boundaries in space domain, their handling in
high-order scheme should also be involved to measure the algorithm performance [13].
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