Vol. 66
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-02-09
Practical Investigation of Different Possible Textile Unit Cell for a C-Band Portable Textile Reflectarray Using Conductive Thread
By
Progress In Electromagnetics Research B, Vol. 66, 15-29, 2016
Abstract
Investigation of a unit cell in terms of reflected wave amplitude and phase, for designing linearly polarized single layer Textile-Reflectarray (TRA) at C-band, is presented. The relative dielectric constant of the material is extracted using resonance method, and a WLAN antenna is designed to verify the accuracy of extracted material parameter. An error of 5% is observed in the extracted dielectric constant, when performance of WLAN antenna is measured at WI-FI Band (2.4 GHz). The extracted dielectric constant is used in the unit cell designing for TRA at the C-Band (5.8 GHz). The radiating element is made using laying technique with conductive thread. A square patch with a ring is selected after analyzing multiple geometries of the patch providing the required reflected phase range and low losses. By varying size of patch and ring of single layer unit cell in CST periodic environment, reflected phase range of 360 degree is achieved, which is required for RA designing. The solid copper ground plane at the bottom of unit cell is replaced with conductive shielded fabric with high level signal attenuation. Four different sizes of textile unit cells are fabricated using conductive thread, and the reflected phase and amplitude are measured using waveguide method. The simulated and measured results are compared when solid copper ground plane at the bottom of unit cell has been replaced with shielded fabric. The proposed method provides the first step towards designing flexible high gain textile reflectarrays.
Citation
Muhammad M. Tahseen, and Ahmed A. Kishk, "Practical Investigation of Different Possible Textile Unit Cell for a C-Band Portable Textile Reflectarray Using Conductive Thread," Progress In Electromagnetics Research B, Vol. 66, 15-29, 2016.
doi:10.2528/PIERB15091704
References

1. Huang, J. and J. A. Encircle, Reflectarray Antennas, John Wiley & Sons Inc., 2007.
doi:10.1002/9780470178775

2. Polar, D. M., S. D. Tarkington, and H. D. Rigors, "Design of millimeter wave microstrip reflectarrays," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, 287-296, 1997.
doi:10.1109/8.560348

3. Haug, J. and R. J. Pozorzelski, "A Ka-band microstrip reflectarray with elements having variable rotation angles," IEEE Transaction on Antennas and Propagation, Vol. 46, No. 5, 650-656, May 1998.
doi:10.1109/8.668907

4. Malfajani, S. and Z. Atlasbaf, "Design and implementation of a broadband single layer circularly polarized reflectarray antenna," IEEE Antennas Wireless Propag. Lett., Vol. 11, 973-976, Aug. 2012.
doi:10.1109/LAWP.2012.2213570

5. Carrasco, E., M. Barba, and J. A. Encinar, "Reflectarray element based on aperture-coupled patches with slots and lines of variable length," IEEE Transaction on Antennas and Propagation, Vol. 55, No. 3, 820-825, Mar. 2007.
doi:10.1109/TAP.2007.891863

6. Bialkowski, M. E. and K. H. Sayidmarie, "Investigations into phase characteristics of a single-layer reflectarray employing patch or ring elements of variable size," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3366-3372, Nov. 2008.
doi:10.1109/TAP.2008.2005470

7. Mahmoud, A. and A. A. Kishk, "Ka-band dual mode circularly polarized reflectarray," IEEE Conference ANTEM, Victoria, Canada, 2014.

8. Encinar, J. A., "Design of two-layer printed reflectarray using patches of variable size," IEEE Transaction on Antennas and Propagation, Vol. 49, 1403-1410, 2001.
doi:10.1109/8.954929

9. Chaharmir, M. R., J. Shaker, N. Gagnon, and D. Lee, "Design of broadband, single layer dualband large reflectarray using multi open loop elements," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 2875-2883, Sep. 2010.
doi:10.1109/TAP.2010.2052568

10. Encinar, J. A. and J. A. Zornoza, "Broadband design of three-layer printed reflectarrays," IEEE Transaction on Antennas and Propagation, Vol. 51, No. 7, 1662-1664, Jul. 2003.
doi:10.1109/TAP.2003.813611

11. Pozar, D. M., "Bandwidth of reflectarrays," IEEE Electronics Letters, Vol. 39, No. 21, 1490-1491, Oct. 2003.
doi:10.1049/el:20030990

12. Deguchi, H., K. Mayumi, M. Tsuji, and T. Nishimura, "Broadband single-layer triple-resonance microstrip reflectarray antennas," Proc. EuMA, 29-32, Italy, 2009.

13. Hasani, H., M. Kamyab, and A. Mirkamali, "Broadband reflectarray antenna incorporating disk elements with attached phase-delay lines," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 156-158, 2010.
doi:10.1109/LAWP.2010.2044473

14. Koski, K., L. Sydanheimo, Y. Rahmat-Samii, and L. Ukkonen, "Fundamental characteristics of electro-textiles in wearable UHF RFID patch antennas for body-centric sensing systems," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6454, 6462, Dec. 2014.
doi:10.1109/TAP.2014.2364071

15. Matthew, J. C. G., B. Pirollo, A. Tyler, and G. Pettitt, "Body wearable antennas for UHF/VHF," Loughborough Antennas and Propagation Conference (LAPC), 2008, 357, 360, Mar. 17-18, 2008.

16. Zhang, S., A. Chauraya, W. Whittow, R. Seager, T. Acti, T. Dias, and Y. Vardaxoglou, "Embroidered wearable antennas using conductive threads with different stitch spacings," Loughborough Antennas and Propagation Conference (LAPC), 2012, 1, 4, Nov. 12–13, 2012.

17. Subramaniam, S., S. Dhar, K. Patra, B. Gupta, L. Osman, K. Zeouga, and A. Gharsallah, "Miniaturization of wearable electro-textile antennas using Minkowski fractal geometry," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 309, 310, Jul. 6–11, 2014.

18. Jiang, Z. H., D. E. Brocker, P. E. Sieber, and D. H. Werner, "A compact, low-profile metasurfaceenabled antenna for wearable medical body-area network devices," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4021, 4030, Aug. 2014.
doi:10.1109/TAP.2014.2327650

19. Rahmat-Samii, Y., "Wearable and implantable antennas in body-centric communications," The Second European Conference on Antennas and Propagation, 2007, EuCAP 2007, 1, 5, Nov. 11–16, 2007.

20. Salonen, P., K. Jaehoon, and Y. Rahmat-Samii, "Dual-band E-shaped patch wearable textile antenna," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 1A, 466, 469, Jul. 3–8, 2005.

21. Moukanda, M., F. Ndagijimana, J. Chilo, and P. Saguet, "A coaxial probe fixture used for extracting complex permittivity of thin layers," IEEE Annual Wireless and Microwave Technology Conference, 2006, WAMICON’06, 1-4, Dec. 4–5, 2006.

22. Baginski, M. E., D. L. Faircloth, and M. D. Deshpande, "Comparison of two optimization techniques for the estimation of complex permittivities of multilayered structures using waveguide measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 10, 3251-3259, Oct. 2005.
doi:10.1109/TMTT.2005.855133

23. Moukanda, F. M., F. Ndagijimana, J. Chilo, and P. Saguet, "A cavity in transmission for extracting electric parameters of thin layers," International Symposium on Signals, Systems and Electronics, 2007, ISSSE’07, 431-434, Jul. 30–Aug. 2, 2007.

24. Haddadi, K. and T. Lasri, "Geometrical optics-based model for dielectric constant and loss tangent free-space measurement," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 7, 1818-1823, Jul. 2014.
doi:10.1109/TIM.2013.2297811

25. Sankaralingam, S. and B. Gupta, "Determination of dielectric constant of fabric materials and their use as substrates for design and development of antennas for wearable applications," IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 12, 3122, 3130, Dec. 2010.
doi:10.1109/TIM.2010.2063090

26. Shams, S. I., M. M. Tahseen, and A. A. Kishk, "Relative permittivity extraction of textile materials based on ridge gap waveguide technology," IEEE Symposium on Antennas and Propagation and URSI (APS/URSI), Vancouver, BC, Canada, Jul. 19–25, 2015.

27. http://www.lessemf.com/, 776-B Watervliet Shaker Rd, Latham, NY 12110, USA.