Vol. 64
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-11-17
Modified Π-Shaped Slot Loaded Multifrequency Microstrip Antenna
By
Progress In Electromagnetics Research B, Vol. 64, 103-117, 2015
Abstract
A single layer, single feed microstrip antenna with multifrequency operation in compact size is proposed. A modified inverted π-shaped slot is introduced at the left side radiating edge of the patch to reduce the size of the antenna by reducing the resonant frequency. Multiple resonant frequencies with increased frequency ratio are also obtained by cutting the modified inverted π-shaped slot. The measured result shows that the proposed antenna resonates at 3.3, 4.55, 5.56 and 6.08 GHz in microwave S and C band. The size of the proposed patch is only 0.176λL×0.132λL at its lower operating frequency. The proposed patch antenna has achieved 68% size reduction as compared with the conventional rectangular microstrip antenna with same patch area. An extensive analysis of the reflection coefficient, voltage standing wave ratio, gain, radiation efficiency and radiation pattern of the proposed antenna is presented in this paper. The proposed antenna is suitable for WiMax and HiPERLAN wireless systems.
Citation
Das Sudipta, Partha Pratim Sarkar, and Santosh Kumar Chowdhury, "Modified Π-Shaped Slot Loaded Multifrequency Microstrip Antenna," Progress In Electromagnetics Research B, Vol. 64, 103-117, 2015.
doi:10.2528/PIERB15090905
References

1. Kuo, J. S. and K. L. Wong, "A compact microstrip antenna with meandering slots in the ground plane," Microwave Opt. Technol. Lett., Vol. 29, 95-97, 2001.
doi:10.1002/mop.1095

2. Rezvani, S., Z. Atlasbaf, and K. Forooraghi, "A novel miniaturized reconfigurable slotted microstrip patch antenna with defected ground structure," Electromagn., Vol. 31, 349-354, 2011.
doi:10.1080/02726343.2011.579766

3. Wong, K.-L., C.-L. Tang, and H.-T. Chen, "A compact meandered circular microstrip antenna with a shorting pin," Microwave Opt. Technol. Lett., Vol. 15, 147-149, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<147::AID-MOP8>3.0.CO;2-G

4. Mitra, D. and S. R. B. Chaudhuri, "CPW-fed miniaturized split ring-loaded slot antenna," Microwave Opt. Technol. Lett., Vol. 54, 1907-1911, 2012.
doi:10.1002/mop.26926

5. Elsdon, M., A. Sambell, and Y. Qin, "Reduced size direct planar-fed patch antenna," Electronics Letters, Vol. 41, 884-886, 2005.
doi:10.1049/el:20051858

6. Bhunia, S., M. K. Pain, S. Biswas, D. Sarkar, P. P. Sarkar, and B. Gupta, "Investigations on microstrip patch antennas with different slots and feeding points," Microwave Opt. Technol. Lett., Vol. 50, 2754-2758, 2008.
doi:10.1002/mop.23790

7. Singh, L. L. K., B. Gupta, P. P. Sarkar, K. Yoshitomi, and K. Yasumoto, "Cross slot multi frequency patch antenna," Microwave Opt. Technol. Lett., Vol. 53, 611-615, 2011.

8. Chakraborty, U., S. Chatterjee, S. K. Chowdhury, and P. P. Sarkar, "A compact microstrip patch antenna for wireless communication," Progress In Electromagnetics Research C, Vol. 18, 211-220, 2010.
doi:10.2528/PIERC10101205

9. Chatterjee, S., S. K. Chowdhury, P. P. Sarkar, and D. C. Sarkar, "Compact microstrip patch antenna for microwave communication," Indian J. Pure Appl. Phys., Vol. 51, 800-807, 2013.

10. Malekpoor, H. and S. Jam, "Design of a multiband asymmetric patch antenna for wireless applications," Microwave Opt. Technol. Lett., Vol. 55, 730-734, 2013.
doi:10.1002/mop.27449

11. Kaya, A., "Meandered slot and slit loaded compact microstrip antenna with integrated impedance tuning network," Progress In Electromagnetics Research B, Vol. 1, 219-235, 2008.
doi:10.2528/PIERB07102601

12. Das, S., A. Karmakar, P. P. Sarkar, and S. K. Chowdhury, "Design and analysis of a novel open ended T-shaped slot loaded compact multifrequency microstrip patch antenna," Microwave Opt. Technol. Lett., Vol. 56, 316-322, 2014.
doi:10.1002/mop.28027

13. Park, Z. and C.-H. Cho, "Size reduction and multiresonance effects of slotted single layer edge-fed patch antennas," J. Korean Phys. Soc., Vol. 61, 623-625, 2012.
doi:10.3938/jkps.61.623

14. Dasgupta, S., B. Gupta, and H. Saha, "Compact equilateral triangular patch antenna with slot loading," Microwave Opt. Technol. Lett., Vol. 56, 268-274, 2014.
doi:10.1002/mop.28073

15. Das, S., P. P. Sarkar, and S. K. Chowdhury, "Design and analysis of a compact monitor-shaped multifrequency microstrip patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 7, 827-837, 2014.
doi:10.1080/09205071.2014.892441

16. Reed, S., L. Desclos, C. Teret, and S. Toutain, "Patch antenna size reduction by means of inductive slots," Microwave Opt. Technol. Lett., Vol. 29, 79-81, 2001.
doi:10.1002/mop.1089

17. Gautam, A. K., P. Benjwal, and B. K. Kanaujia, "A compact square microstrip antenna for circular polarization," Microwave Opt. Technol. Lett., Vol. 54, 897-900, 2012.
doi:10.1002/mop.26746

18. Kim, J.-M., K.-W. Kim, J.-G. Yook, and H.-K. Park, "Compact stripline-fed meander slot antenna," Electronics Lett., Vol. 37, 995-996, 2001.
doi:10.1049/el:20010667

19. Song, M.-H. and J.-M. Woo, "Miniaturization of microstrip patch antenna using perturbation of radiating slot," Electronics Lett., Vol. 39, 417-419, 2003.
doi:10.1049/el:20030260

20. Xue, Q., K. M. Shum, C. H. Chan, and K. M. Luk, "A novel printed microstrip window antenna for size reduction and circuit embedding," Microwave Opt. Technol. Lett., Vol. 32, 192-194, 2002.
doi:10.1002/mop.10127

21. Gosalia, K. and G. Lazzi, "Reduced size, dual-polarized microstrip patch antenna for wireless communications," IEEE Trans. on Antennas and Propagation, Vol. 51, 2182-2186, 2003.
doi:10.1109/TAP.2003.816344

22. Zeland Software Inc. "IE3D: MoM-based EM simulator,", Zeland Software Inc., Fremont, CA.

23. Das, S., P. P. Sarkar, and S. K. Chowdhury, "Investigations on miniaturized multifrequency microstrip patch antennas for wireless communication applications," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 9, 1145-1162, 2013.
doi:10.1080/09205071.2013.802656