Vol. 44
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-11-20
Reconstruction of Objects Buried in Layered Media Based on an Equivalent Current Source
By
Progress In Electromagnetics Research M, Vol. 44, 171-182, 2015
Abstract
In this paper, a novel algorithm based on an equivalent current source is proposed to reconstruct objects buried in a multilayered medium. First, a radiating current source, one part of the equivalent current source, is obtained directly in closed-form from scattering data via the signal-subspace method. Secondly, a nonradiating current source, the other part of the equivalent current source, is represented with the linear superposition of vectors in the noise-subspace. Finally, the objects and equivalent current source are reconstructed efficiently by solving an optimization problem in a lower dimensional linear space with the conjugate gradient (CG) method. To test the new method, the effects of the frequency of incident wave, array aperture size, and SNR are studied in detail. Numerical results show that the proposed method has a high capacity to reconstruct objects buried in a multilayered medium.
Citation
Peng Zhang, Peng Fei, Xin Wen, and Feng Nian, "Reconstruction of Objects Buried in Layered Media Based on an Equivalent Current Source," Progress In Electromagnetics Research M, Vol. 44, 171-182, 2015.
doi:10.2528/PIERM15081807
References

1. Cui, T. J. and W. C. Chew, "Novel diffraction tomography algorithm for imaging two-dimensional targets buried under a lossy earth," IEEE Transactions on Geoscience Remote Sensing, Vol. 38, No. 4, 2033-2041, Jul. 2000.

2. Meincke, P., "Linear GPR inversion for lossy soil and a planar air-soil interface," IEEE Transactions on Geoscience Remote Sensing, Vol. 39, No. 12, 2713-2721, Dec. 2001.
doi:10.1109/36.975005

3. Galdi, V., D. A. Castanon, and L. B. Felsen, "Multifrequency reconstruction of moderately rough interfaces via quasi-ray Gaussian beams," IEEE Transactions on Geoscience and Sensing, Vol. 40, No. 2, 453-460, Feb. 2003.
doi:10.1109/36.992810

4. Zhang, Z. Q. and Q. H. Liu, "3-D nonlinear image reconstruction for microwave biomedical imaging," IEEE Transactions on Biomedical Engineering, Vol. 51, No. 3, 544-548, Mar. 2004.
doi:10.1109/TBME.2003.821052

5. Song, L. P., Q. H. Liu, F. Li, and Z. Q. Zhang, "Reconstruction of three-dimensional objects in layered media: Numerical experiments," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 4, 1556-1561, Apr. 2005.
doi:10.1109/TAP.2004.842585

6. Song, L. P. and Q. H. Liu, "Ground-penetrating radar landmine imaging: Two-dimensional seismic migration and three-dimensional inverse scattering in layered media," Radio Science, Vol. 40, No. 1, RS1S90.1-RS1S90.1, Feb. 2005.
doi:10.1029/2004RS003087

7. Cui, T. J. and W. C. Chew, "Diffraction tomographic algorithm for the detection of three-dimensional objects buried in a lossy half-space," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 1, 42-49, Jan. 2002.
doi:10.1109/8.992560

8. Deming, R. and A. J. Devaney, "Diffraction tomography for multi-monostatic ground penetrating radar imaging," Inverse Problems, Vol. 13, 29-45, 1997.
doi:10.1088/0266-5611/13/1/004

9. Wang, Y. M. and W. C. Chew, "An iterative solution of the two-dimensional electromagnetic inverse scattering problems," Int. J. Imaging Syst. Tech., Vol. 1, No. 1, 100-108, 1989.
doi:10.1002/ima.1850010111

10. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted born iteration method," IEEE Transactions on Medical Imaging, Vol. 9, No. 2, 218-225, Jun. 1990.
doi:10.1109/42.56334

11. Van den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, No. 6, 1607-1620, Jul. 1997.
doi:10.1088/0266-5611/13/6/013

12. Van den Berg, P. M., A. L. van Broehoven, and A. Abubakar, "Extended contrast source inversion," Inverse Problems, Vol. 15, No. 5, 1325-1344, Jun. 1999.
doi:10.1088/0266-5611/15/5/315

13. Chen, X., "Subspace-based optimization method for solving inverse-scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, 42-49, Jan. 2010.
doi:10.1109/TGRS.2009.2025122

14. Chen, X., "Application of signal-subspace and optimization methods in reconstructing extended scatterers," Journal of the Optical Society of America A, Vol. 26, No. 4, 1022-1026, Mar. 2009.
doi:10.1364/JOSAA.26.001022

15. Xu, X. M. and Q. H. Liu, "The BCGS-FFT method for electromagnetic scattering from inhomogeneous objects in a planarly layered-medium," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 77-80, Feb. 2002.
doi:10.1109/LAWP.2002.802549

16. Millard, X. and Q. H. Liu, "Fast volume integral equation solver for electromagnetic scattering from large inhomogeneous objects in planarly layered-media," IEEE Transaction on Antennas and Propagation, Vol. 51, No. 9, 2393-2401.
doi:10.1109/TAP.2003.816311

17. Simsek, E., J. Liu, and Q. H. Liu, "A spectral integral method (SIM) for layered media," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 6, 1742-1749, Jun. 2006.
doi:10.1109/TAP.2006.875500

18. Chew, W. C. and J. H. Lin, "A frequency-hopping approach for microwave imaging of large inhomogeneous bodies," IEEE Microwave Guided Wave Letter, Vol. 5, No. 12, 439-441, Dec. 1995.
doi:10.1109/75.481854

19. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, Institute of Physics Publishing, 1998.
doi:10.1887/0750304359

20. Persico, R., R. Bernini, and F. Soldovieri, "The role of the measurement configuration in inverse scattering from buried objects under the born approximation," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 6, Jun. 2005.
doi:10.1109/TAP.2005.848468

21. Soldovieri, F. and R. Solimene, "Through-wall imaging via a linear inverse scattering algorithm," IEEE Geoscience Remote Sensing Letters, Vol. 4, No. 4, Oct. 2007.