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Reconstruction of Objects Buried in Layered Media
Based on an Equivalent Current Source

Peng Zhang1, 2, *, Peng Fei1, 2, Xin Wen1, 2, and Feng Nian1, 2

Abstract—In this paper, a novel algorithm based on an equivalent current source is proposed to
reconstruct objects buried in a multilayered medium. First, a radiating current source, one part of
the equivalent current source, is obtained directly in closed-form from scattering data via the signal-
subspace method. Secondly, a nonradiating current source, the other part of the equivalent current
source, is represented with the linear superposition of vectors in the noise-subspace. Finally, the objects
and equivalent current source are reconstructed efficiently by solving an optimization problem in a lower
dimensional linear space with the conjugate gradient (CG) method. To test the new method, the effects
of the frequency of incident wave, array aperture size, and SNR are studied in detail. Numerical results
show that the proposed method has a high capacity to reconstruct objects buried in a multilayered
medium.

1. INTRODUCTION

Two-dimensional reconstruction of objects of arbitrary shape embedded in a multilayered medium using
electromagnetic (EM) waves is an important research area in subsurface sensing. In particular, such
applications are common to geophysical exploration, environmental characterization, and subsurface
sensing of landmines, through-wall-imaging, medical imaging and underground structures [1–6].
Electromagnetic inverse scattering for subsurface sensing is complicated and challenging in two-fold:
one is that electromagnetic wave propagation is essentially three-dimensional wave phenomena and
waves interact in a complex way with ground surface, subsurface layers, and objects; the other is that
this class of inverse problems involve intensive computation and are nonlinear and ill-posed. In spite of
these difficulties, there has been a wide variety of ways to solve the inverse scattering problems over the
past two decades.

Traditionally, the existing tomography algorithms are highly efficient. Generally, the principle
of diffraction tomography is based on a linear relation between the spatial Fourier transform of
the object and the scattered field for weak scatterers [7, 8]. However, when multiple scattering is
important for strong scatterers, diffraction tomography becomes less accurate. To unravel multiple
scattering effects, most nonlinear algorithms incorporate the nonlinear, multiple scattering effects into
the inversion algorithm. The multiple scattering effects can be accounted for by posing the problem as
an optimization problem whereby a forward scattering model is used to generate the scattered field data
to match the experimentally measured data. Among many nonlinear inversion algorithms, the Born
iterative method (BIM) [9], distorted Born iterative method (DBIM) [10] and contrast source inversion
(CSI) method [11, 12] are three typical techniques to solve the well-known nonlinear and ill-posed
inverse problem, while the most ambitious algorithm is the contrast source inversion (CSI) method.
The CSI method has been used extensively for experimental medical, microwave, and geophysics
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problems because it is computationally faster, has less memory as well as data requirements and easily
accommodates a priori information. The basic idea of the CSI method is to construct an objective
function that consists of data equation and object equation and then to minimize the objective function
by alternatively updating the contrast and contrast source using the conjugate-gradient (CG) method.
Recently, inspired by the subspace-based method and CSI method, Chen has proposed a subspace-based
optimization method (SOM) to solve the inverse scattering problem in free space [13, 14]. The essence
of the SOM is to obtain the deterministic part of the equivalent current source directly by calculating
the singular value decomposition, (SVD) of the current-to-field mapping operator whereas to determine
the rest part (the ambiguous part) by optimization. It has been proved that these features significantly
speed up the convergence and make the algorithm perform robustly in the presence of noise.

However, to our best knowledge, the reconstruction of objects buried in a multilayered medium
using the SOM has not been reported previously, and it is the main contribution of this work. In this
paper, the subspace-based optimization method is used to deal with the inverse problem built in a
multilayered medium. The objects are reconstructed by solving an optimization problem with the CG
method. And the effects of the frequency of incident wave, array aperture size, and SNR are analyzed in
numerical studies. The organization of the remainder of this paper is as follows. In Section 2, formulas
for the SOM in a multilayered medium are derived. Several numerical examples of targets buried in
a five-layer medium background are presented in Section 3. Finally, some conclusions are drawn in
Section 4.

2. INVERSION ALGORITHM

Consider a 2-D inhomogeneous object completely embedded in layer q of a planarly multilayered medium
with layer interfaces parallel to the x axis. The geometry of the electromagnetic scattering problem is
depicted in Fig. 1. The electrical properties of layer q and the object are characterized by the complex
permittivity εq and ε, respectively. Here, we confine the problem to 2-D transverse magnetic (TM)
inverse scattering case for simplicity, and the magnetic permeability μ is the same as that in layer
q(μ = μq). Therefore, there are no induced magnetic sources in the object.

Suppose that domain D is successively illuminated by a total number of Ni incident electric fields
Einc

i , and the corresponding scattered fields Esca
i are measured on surface S in layer q outside D. Then

following [11], the inverse problem can be described by the data equation

Esca
i (r) = GSwi, r ∈ S, i = 1, 2, . . . Ni (1)

and the object equation

wi = χEinc
i (r) + χGDwi, r ∈ D, i = 1, 2, . . . Ni (2)

where wi(r) = χ(r)Etot
i (r) is the equivalent current source and χ(r) = ε/εq − 1 the contrast function.
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Figure 1. Typical configuration of an inhomogeneous object in a planarly layered medium.
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In the above, the linear integral operators GS,D are given by

GS,Dw(r) = k2
q

∫
D

Gmq(r, r
′
)w(r

′
)dr

′
, r ∈ S or r ∈ D (3)

where the squared wavenumber k2
q = �2μqεq and Gmq(r, r

′
) is a scalar Green’s function in a layered

medium m due to a line source at r = (x
′
, y

′
) in the layered medium q, satisfying[

μm∇ · μ−1
m ∇ + k2

m

]
Gmq

(
r, r

′)
= −δ

(
r, r

′)
(4)

With the method of moments, Eqs. (1) and (2) can be discretized into the following two compact forms

esca = GS ·w (5)
w = χ · (einc + GD ·w) (6)

Given the measured data on S and incident fields in D, one can obtain a contrast distribution
representing the electrical properties of the object by solving the above nonlinear and ill-posed inverse
scattering problem in a multilayered medium background. In the following, the SOM is briefly
introduced. For more details, the reader is referred to [13].

Mathematically, the SVD of scattering operator GS is given by the following equation

GS =
∑
m

σmumv∗
m (7)

where (ui, σi,vi) is the singular system of scattering operator GS , and the singular values with a total
number of L nonvanishing ones are placed in nonincreasing order such as σ1 ≥ σ2 ≥ . . . ≥ σL ≥ σL+1 =
. . . σM = 0.

From the basic property of SVD, the singular vectors vi form the complete set for the object domain
of the scattering operator, and the equivalent current source can be represented as

w =
M∑

j=1

ajvj (8)

where aj is the parameter to determine the equivalent current source.
By substituting Eqs. (7) and (8) into Eq. (5) and with simple deduction, one can get

L∑
j=1

ajσjuj = esca (9)

Then by multiply Eq. (9) with u∗
j , one can find

aj =
u∗

j · esca

σj
, j = 1, 2, . . . , L (10)

From Eqs. (8) and (10), one has

w =
L∑

j=1

u∗
j · esca

σj
vj + VNonrad · a (11)

where VNonrad = [vL+1, . . . ,vM ], a = [aL+1, . . . , aM ].
Define

wRad =
L∑

j=1

u∗
j · esca

σj
vj (12)

wNonRad = VNonrad · a (13)
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then Eq. (11) is formulated as
w = wRad + wNonRad (14)

where, wRad and wNonRad are called the radiating current and nonradiating current, respectively.
From the above derivation, it is found that the radiating current can be directly obtained with Eq.

(12), and the nonradiating current can be determined by solving the only unknown parameter a.
In order to solve the unknown parameter a, one can construct a cost function as follows

Δ = Δstate/ ‖esca‖2 + Δdata/
∥∥∥wRad

∥∥∥2
(15)

The residue due to the mismatch between the calculated scattered field and the measured scattered
field can be represented as

Δdata =
∥∥∥GS · VNonrad · a + GS ·wRad − esca

∥∥∥2
(16)

The residue due to the mismatch between the calculated and measured equivalent current sources
can be formulated as

Δstate = ‖A · a − b‖2 (17)

where A = VNonrad − χ · (GD · VNonrad), b = χ · (einc + GD ·wRad) − wRad.
After we add the residues for each incidence wave together, the cost function is given as

f (a1,a2, . . . ,aNi ;χ) =
Ni∑
p=1

(∥∥GS ·VNonrad · ap + GS · wRad
p − esca

p

∥∥2∥∥esca
p

∥∥2 +
‖A · ap − bp‖2∥∥wRad

p

∥∥2

)
(18)

Then one can obtain the target profile through minimizing the cost function by alternatively
updating the contrast and equivalent current source using the conjugate-gradient method. The flowchart
of the computer program is shown in Fig. 2. Below we apply this imaging method to reconstruct 2-D
objects in a layered medium.

< emin

Figure 2. Flowchart of the SOM method utilized for the inverse problem in a multilayered medium.
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3. NUMERICAL RESULTS

In this section, we have performed several numerical examples to validate the proposed inversion
techniques in a layered medium. The configuration of a five-layer medium and a buried target is shown
in Fig. 3. The dielectric constant and conductivity of the five layers studied here are (εr, σ) = (1.0,
0.0 S/m), (4.0, 0.0 S/m), (1.0, 0.0 S/m), (4.0, 0.0 S/m) and (1.0, 0.0 S/m), respectively. The second and
fourth layers have the same thickness d = 0.2 m. The imaging domain D is a 2m × 2m square region
and is subdivided into 40 × 40 cells. In our simulation, the targets consist of four characters P , I, E,
R, and their dielectric constant is εr = 2.

To facilitate the imaging setup in this work, we use two-sided arrays placed on the first and fifth
layers. A linear array of length L = 6 m has 31 equally spaced transmitter/receivers with an interval of
0.2 m. All the synthetic data are generated using the volume electrical field integral equation technique
known as the stabilized bi-conjugate gradient fast Fourier transform (BCGS-FFT) [15, 16]. A five-layer
medium background Green’s function is calculated with the method provided in [17]. Fig. 4 gives the
Green’s function G53 calculated with different methods for the configuration shown in Fig. 3. In the
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Figure 3. Configuration of a five-layer medium background and a buried target.

Figure 4. The Green’s function G53 calculated with the method in Ref. [16] and the FDTD method.
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following, numerical results are presented to study the effects of the frequency of incident wave, array
aperture size, and SNR.

3.1. Effect of the Frequency of Incident Wave on Reconstruction

In this section, the effect of the frequency of incident wave on reconstruction is studied. A frequency
marching approach which uses the inverted result at low frequency as the initial solution for the next
frequency is carried out [18]. Fig. 5 shows the reconstructed results with the frequency marching method
from 100 to 400 MHz. The relative MSE (Mean Squared Error) of the reconstruction is shown in Fig. 6.
It is observed from these results that the quality of imaging is dramatically improved from low frequency
to high frequency. Eventually, the targets are well recovered in terms of shape and location at the high
frequency of 400 MHz. This is because more details of targets are obtained from the scattered field at
high frequency when using the frequency marching method.

Figure 5. Reconstructed results using the frequency marching method at (1) 100 MHz, (2) 200 MHz,
(3) 300 MHz, (4) 400 MHz.

Figure 6. MSE of reconstructed results as a function of the frequency of incident wave.
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3.2. Effect of Array Aperture Size on Reconstruction

With the frequency marching approach improvement on the image reconstruction, we further consider
the effect of array aperture size on the reconstruction. Fig. 7 shows the image reconstructions with the
linear array aperture size of L from 1 m to 6m. The reconstruction is implemented at the frequency of
400 MHz by means of frequency marching approach. It is observed that the resolution of the images is
gradually improved from narrow linear array aperture size of 1 m to wide linear array aperture size of
6m, and the targets are well reconstructed in terms of shape and location. In Fig. 8, the MSE decreases
fast from L = 1 m to L = 3m while slowly from L = 4m to L = 6 m. This is because the scattered
field received by the array aperture with size smaller than that of the target does not contain enough
angular spectrum information of the target, which is important for the reconstruction of high-resolution
image. Thus, the array aperture size must be at least larger than the size of target in order to obtain
high resolution reconstructed image.

Figure 7. Reconstructed results with a linear array aperture size of (1) L = 1 m, (2) L = 2 m, (3)
L = 3 m, (4) L = 4 m, (5) L = 5m, and (6) L = 6 m.

Figure 8. MSE of reconstructed results as a function of array aperture size.
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Figure 9. Reconstructed results using data of L = 3 m Δx = 0.2 m under different SNR.

Figure 10. Reconstructed results using data of L = 6m Δx = 0.6 m under different SNR.
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3.3. Effect of SNR on Reconstruction

The results of the above examples have been obtained with noiseless data. In reality, it is important
for the inversion method to be robust under noise contamination. In this section, the effect of SNR on
the reconstruction results is discussed. The reconstructed images are evaluated under three different
conditions: 1) L = 3m Δx = 0.2 m; 2) L = 6 m Δx = 0.6 m; 3) L = 6 m Δx = 0.2 m and these images
are presented in Fig. 9, Fig. 10 and Fig. 11, respectively. It is shown from the numerical calculations
that the reconstructions are gradually improved with increasing SNR. Besides, the reconstructed images
in Fig. 10 are deteriorated compared with the ones in Fig. 9 when the SNR is below 10 dB but improved

Figure 11. Reconstructed results using data of L = 6m Δx = 0.6 m under different SNR.

Figure 12. MSE of reconstructed results as a function of SNR.
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when the SNR is above 10 dB. This is in coincidence with the MSE of the three different conditions
shown in Fig. 12. Generally speaking, wide array aperture size and small sampling interval are beneficial
to obtaining well reconstructed images under noise contamination. However, small sampling interval
and small array aperture size suit for the case of small SNR because the inversion is sensitive to sampling
interval when the SNR is below 10 dB. On the contrary, wide sampling interval and wide array aperture
size can improve the imaging result for the case of high SNR.

3.4. Discussion

In this section, the effects of the frequency of incident wave, array aperture size, and SNR on the
reconstructions are analyzed via the SVD of the scattering operator Gs. The SVD of the operator is
mainly considered as a tool not only for obtaining a regularized solution to the ill-posedness inverse
scattering problem, but also for analyzing the performance achievable in the reconstructions. The
SVD of the operator, which connects the equivalent current source to the scattered field datum in Eq.
(1), provides the singular system {un, σn, vn}∞n=0 [19]. The singular functions {un}∞n=0 and {vn}∞n=0
form the basis for the space of the visible objects and for the closure of the range of the operator
respectively. The set {σn}∞n=0 denotes the sequence of the singular values ordered in a non-increasing
sequence. In [13, 20, 21], it is demonstrated that the number of singular values above a chosen threshold
corresponds to the number of singular functions in the inversion and thus determines the performance in
the reconstructions. Namely, more singular functions achieve more stable solution of higher resolution.

In the following, numerical SVD analysis is performed to investigate the effects of the frequency
of incident wave, array aperture size, and SNR on the reconstructions. The behavior of the singular
values above the threshold of 18 dB for these three cases is presented in Fig. 13, Fig. 14 and Fig. 15,
respectively. In Fig. 13, the number of singular values above the threshold, called N for simplicity,
increases from low frequency to high frequency. It means that the operator Gs for high frequency wave
contains more singular functions and can provide higher quality of imaging, which has been verified in
Fig. 5. Similarly, the conclusion can be drawn from Fig. 14, in which wider array aperture size has larger
N . Larger N gives better performance in reconstructions, which has been testified in Fig. 7. Fig. 15
shows that the case of wide array aperture size and small sampling interval (L = 6 m Δx = 0.2 m) has
the largest N and consequently provides the better reconstructions than other two cases. However, the
case of small interval and small array aperture size (L = 3 m Δx = 0.2 m) has larger N than the case
of wide interval and wide array aperture size (L = 6 m Δx = 0.6 m) when the threshold is above 10 dB
but has smaller N when the threshold is below 10 dB. It suggests that small interval and small array
aperture size performs better when SNR is low and inversely wide interval and wide array aperture size
enhances the resolution for high SNR. This conclusion has also been supported by the results shown in
Fig. 9–Fig. 12.

Figure 13. Singular values of the operator Gs for
different frequencies of incident wave.

Figure 14. Singular values of the operator Gs for
different values of array aperture size.
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Figure 15. Singular values of the operator Gs for three pairs of array aperture size and sampling
interval.

4. CONCLUSION

This paper proposes a 2-D equivalent current source inversion based imaging technique for layered
media. The effects of the frequency of incident wave, array aperture size, and SNR on imaging were
investigated and analyzed via SVD of the scattering operator. Numerical results demonstrate that
object locations, shape, and their constitutive parameters can be reconstructed accurately through the
use of multifrequency data with a suitable array aperture size and sampling interval even under noise
background. Therefore, the proposed method can be used to solve inverse scattering problems in the
field of through-wall-imaging, ground penetrating radar, etc. Future work includes the experimental
verification of the inverse algorithm and the development of a 3-D extension of the proposed method.
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