Vol. 63
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-09-18
Scattering of an Obliquely Incident Plane Electromagnetic Wave by a Magnetized Plasma Column: Energy Flow Patterns at Plasmon Resonances
By
Progress In Electromagnetics Research B, Vol. 63, 173-186, 2015
Abstract
The scattering of an obliquely incident H-polarized plane electromagnetic wave by a magnetized plasma column is studied. It is assumed that the column is located in free space and aligned with an external static magnetic field. The emphasis is placed on the case where the angular frequency of the incident wave coincides with one of the surface- or volume-plasmon resonance frequencies of the column. The spatial structures of the field and energy flow patterns in the near zone of the column are analyzed, and the location of the regions with a greatly enhanced magnitude of the timeaveraged Poynting vector is determined. It is shown that the sign reversal of the longitudinal energy-flow component that is parallel to the column axis can occur when passing across the boundary between the inner region of the column and the surrounding medium.
Citation
Vasiliy A. Es'kin, Alexander V. Ivoninsky, and Alexander V. Kudrin, "Scattering of an Obliquely Incident Plane Electromagnetic Wave by a Magnetized Plasma Column: Energy Flow Patterns at Plasmon Resonances," Progress In Electromagnetics Research B, Vol. 63, 173-186, 2015.
doi:10.2528/PIERB15080402
References

1. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, 1973.

2. Armelles, G., A. Cebollada, A. García-Martín, and M. Ujué González, "Magnetoplasmonics: Combining magnetic and plasmonic functionalities," Adv. Optical Mater., Vol. 1, No. 1, 10-35, 2013.
doi:10.1002/adom.201200011

3. Wang, Z., Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, "Reflectionfree one-way edge modes in a gyromagnetic photonic crystal," Phys. Rev. Lett., Vol. 100, No. 1, 013905, 2008.
doi:10.1103/PhysRevLett.100.013905

4. Davoyan, A. R. and N. Engheta, "Nonreciprocal rotating power flow within plasmonic nano-structures," Phys. Rev. Lett., Vol. 111, No. 4, 047401, 2013.
doi:10.1103/PhysRevLett.111.047401

5. Davoyan, A. R. and N. Engheta, "Nanoscale plasmonic circulator," New J. Phys., Vol. 15, No. 8, 083054, 2013.
doi:10.1088/1367-2630/15/8/083054

6. Kondrat'ev, I. G., A. V. Kudrin, and T. M. Zaboronkova, Electrodynamics of Density Ducts in Magnetized Plasmas, Gordon and Breach, 1999.

7. Kudrin, A. V., N. M. Shkokova, O. E. Ferencz, and T. M. Zaboronkova, "Whistler wave radiation from a pulsed loop antenna located in a cylindrical duct with enhanced plasma density," Phys. Plasmas, Vol. 21, No. 11, 112115, 2014.
doi:10.1063/1.4901949

8. Kudrin, A. V., A. S. Zaitseva, T. M. Zaboronkova, and S. S. Zilitinkevich, "Current distribution and input impedance of a strip loop antenna located on the surface of a circular column filled with a resonant magnetoplasma," Progress In Electromagnetics Research B, Vol. 55, 241-256, 2013.
doi:10.2528/PIERB13090105

9. Ivoninsky, A. V., V. A. Es'kin, and A. V. Kudrin, "The energy flow behavior during the resonance scattering of a plane electromagnetic wave by a magnetized plasma column," Nizhny Novgorod Univ. Bull., No. 1, Pt. 2, 141-149, 2014.

10. Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, 1970.

11. Kudrin, A. V., E. Yu. Petrov, G. A. Kyriacou, and T. M. Zaboronkova, "Electromagnetic radiation from sources embedded in a cylindrically stratified unbounded gyrotropic medium," Progress In Electromagnetics Research B, Vol. 12, 297-331, 2009.
doi:10.2528/PIERB08120503

12. Crawford, F. W., G. S. Kino, and A. B. Cannara, "Dipole resonances of a plasma in a magnetic field," J. Appl. Phys., Vol. 34, No. 11, 3168-3175, 1963.
doi:10.1063/1.1729157

13. Seshadri, S. R., "Plane-wave scattering by a magnetoplasma cylinder," Electron. Lett., Vol. 1, No. 9, 256-258, 1965.
doi:10.1049/el:19650232

14. Gildenburg, V. B. and G. A. Markov, "The resonances of a gas-discharge plasma in a magnetic field," Radiophys. Quantum Electron., Vol. 11, No. 5, 446-448, 1968.
doi:10.1007/BF01034379

15. Chen, F. F. and R. W. Boswell, "Helicons --- The past decade," IEEE Trans. Plasma Sci., Vol. 25, No. 6, 1245-1257, 1997.
doi:10.1109/27.650899

16. Carter, M. D., F. W. Baity, Jr., G. C. Barber, R. H. Goulding, Y. Mori, D. O. Sparks, K. F. White, E. F. Jaeger, F. R. Chang-Díaz, and J. P. Squire, "Comparing experiments with modeling for light ion helicon plasma sources," Phys. Plasmas, Vol. 9, No. 12, 5097-5110, 2002.
doi:10.1063/1.1519539

17. Kral'kina, E. A., "Low-pressure radio-frequency inductive discharge and possibilities of optimizing inductive plasma sources," Phys. Uspekhi, Vol. 51, No. 5, 493-512, 2008.
doi:10.1070/PU2008v051n05ABEH006422

18. Luk'yanchuk, B. and V. Ternovsky, "Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field," Phys. Rev. B, Vol. 73, No. 23, 235432, 2006.
doi:10.1103/PhysRevB.73.235432

19. Luk'yanchuk, B. S., M. I. Tribelsky, V. Ternovsky, Z. B. Wang, M. H. Hong, L. P. Shi, and T. C. Chong, "Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies in weakly dissipating materials," J. Opt. A: Pure Appl. Opt., Vol. 9, No. 9, S294-S300, 2007.
doi:10.1088/1464-4258/9/9/S03