Vol. 152
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-08-27
Broadband Green's Function with Low Wavenumber Extraction for Arbitrary Shaped Waveguide and Applications to Modeling of Vias in Finite Power/Ground Plane
By
, Vol. 152, 105-125, 2015
Abstract
In this paper we developed the method of broadband Green's function with low wavenumber extraction (BBGFL) for arbitrary shaped waveguide. The case of Neumann boundary condition is treated. The BBGFL has the advantage that when using it to solve boundary value problems in a waveguide, the boundary conditions have been satisfied already. The broadband Green's function is expressed in modal expansion of modes that are frequency independent. To accelerate the convergence of the Green's function, a low wavenumber extraction is performed. The singularity of the Green's function is also extracted by such low wavenumber extraction. Numerical results show that BBGLF and direct MoM are in good agreement. We next illustrate the application of BBGFL for broadband simulations of vias in printed circuit boards (PCB) by combining with the method of Foldy-Lax multiple scattering equation. The results show that BBGFL are in good agreement with MoM and HFSS. It is also shown that BBGFL is many times faster than direct MoM and HFSS. The computational efficiency in broadband simulations makes this technique useful for fast computer-aided design (CAD).
Citation
Leung Tsang, and Shaowu Huang, "Broadband Green's Function with Low Wavenumber Extraction for Arbitrary Shaped Waveguide and Applications to Modeling of Vias in Finite Power/Ground Plane," , Vol. 152, 105-125, 2015.
doi:10.2528/PIER15072605
References

1. Swaminathan, M., D. Chung, S. Grivet-Talocia, K. Bharath, V. Laddha, and J. Xie, "Designing and modeling for power integrity," IEEE Trans. Electromagn. Compat., Vol. 52, No. 2, 288-310, May 2010.
doi:10.1109/TEMC.2010.2045382

2. Li, E.-P., X.-C. Wei, A. C. Cangellaris, E.-X. Liu, Y.-J. Zhang, M. D’Amore, J. Kim, and T. Sudo, "Progress review of electromagnetic compatibility analysis technologies for packages, printed circuit boards, and novel interconnects," IEEE Trans. Electromagn. Compat., Vol. 52, No. 2, 248-265, May 2010.
doi:10.1109/TEMC.2010.2048755

3. Leone, M., "The radiation of a rectangular power-bus structure at multiple cavity-mode resonances," IEEE Trans. on Microw. Theory and Tech., Vol. 45, No. 3, 486-492, Aug. 2003.

4. Shim, H.-W. and T. H. Hubing, "A closed-form expression for estimating radiated emissions from the power planes in a populated printed circuit board," IEEE Trans. Electromagn. Compat., Vol. 48, No. 1, 74-81, Feb. 2006.
doi:10.1109/TEMC.2005.861377

5. Kim, J.-H. and M. Swaminathan, "Modeling of irregular shaped power distribution planes using transmission matrix method," IEEE Transactions on Advanced Packaging, Vol. 24, No. 3, 334-346, 2001.
doi:10.1109/6040.938301

6. Ye, X., M. Y. Koledintseva, M. Li, and J. L. Drewniak, "DC power-bus design using FDTD modeling with dispersive media and surface mount technology components," IEEE Trans. Electromagn. Compat., Vol. 43, No. 4, 579-587, Nov. 2001.

7. Ege Engin, A., K. Bharath, and M. Swaminathan, "Multilayered finite-difference method (MFDM) for modeling of package and printed circuit board planes," IEEE Trans. Electromagn. Compat., Vol. 49, No. 2, 441-447, May 2007.
doi:10.1109/TEMC.2007.893331

8. Arcioni, P., M. Bozzi, M. Bressan, G. Conciauro, and L. Perregrini, "The BI-RME method: An historical overview," 2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), May 14-16, 2014.

9. Tsang, L. and D. Miller, "Coupling of vias in electronic packaging and printed circuit board structures with finite ground plane," IEEE Transactions on Advanced Packaging, Vol. 26, No. 4, 375-384, Nov. 2003.
doi:10.1109/TADVP.2003.821081

10. Zhang, Y.-J. and J. Fan, "A generalized multiple scattering method for dense vias with axially-anisotropic modes in an arbitrarily-shaped plate pair," IEEE Trans. on Microw. Theory and Tech., Vol. 60, No. 7, 2035-2045, Jul. 2012.
doi:10.1109/TMTT.2012.2195195

11. Chang, X. and L. Tsang, "Fast and broadband modeling method for multiple vias with irregular antipad in arbitrarily shaped power/ground planes in 3-D IC and packaging based on generalized Foldy-Lax equations," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 4, No. 4, 685-696, Apr. 2014.
doi:10.1109/TCPMT.2013.2290897

12. Tsang, L. and S. Huang, "Full wave modeling and simulations of the waveguide behavior of printed circuit boards using a broadband Green's function technique,", Provisional U.S. Patent No. 62/152.702, Apr. 24, 2015.

13. Huang, S., "Broadband Green's function and applications to fast electromagnetic analysis of high-speed interconnects,", Ph.D. dissertation, Dept. Elect. Eng., Univ. Washington, Seattle, WA, Jun. 2015.

14. Huang, S. and L. Tsang, "Broadband Green’s function and applications to fast electromagnetic modeling of high speed interconnects," IEEE International Symposium on Antennas and Propagation, Vancouver, BC, Canada, Jul. 2015.

15. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice-Hall, 1991.

16. Tsang, L., J. A. Kong, K. H. Ding, and C. Ao, Scattering of Electromagnetic Waves, Volume 2, Numerical Simulations, Wiley, 2001.
doi:10.1002/0471224308

17. Tsang, L., H. Chen, C. C. Huang, and V. Jandhyala, "Modeling of multiple scattering among vias in planar waveguides using Foldy-Lax equations," Microw. Opt. Tech. Lett., Vol. 31, 201-208, Nov. 2001.

18. Chen, H., Q. Li, L. Tsang, C. C. Huang, and V. Jandhyala, "Analysis of large number of vias and differential signaling in multi-layered structures," IEEE Trans. on Microw. Theory and Tech., Vol. 51, 818-829, Mar. 2003.
doi:10.1109/TMTT.2003.808616

19. Gu, X., B. Wu, C. Baks, and L. Tsang, "Fast full wave analysis of PCB via arrays with model-to-hardware correlation," IEEE 18th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS'09), 175-178, 2009.

20. Wu, B. and L. Tsang, "Modeling multiple vias with arbitrary shape of antipads and pads in high speed interconnect circuits," IEEE Microwave and Wireless Comp. Lett., Vol. 19, 12-14, 2009.

21. Tsang, L. and X. Chang, "Modeling of vias sharing the same antipad in planar waveguide with boundary integral equation and group T matrix method," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 3, No. 2, 315-327, Feb. 2013.
doi:10.1109/TCPMT.2012.2220771