Vol. 44
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-10-08
Single-Antenna Time-Reversal Imaging Based on Independent Component Analysis
By
Progress In Electromagnetics Research M, Vol. 44, 47-58, 2015
Abstract
Time reversal techniques are based on the time reversal invariance of the wave equation. They use time-reversed fields recollected by an array antenna to perform imaging and focusing on the source of received signals. Two widely used time reversal techniques are DORT and time reversal MUSIC which are based on eigenvalue decomposition of the time reversal operator. We introduce a new time reversal technique based on independent component analysis (ICA). Time reversal ICA (TR-ICA) exploits the independence of scattered signals of the well-resolved targets to perform imaging. It breaks the mixed backscattered received signals to independent components by maximizing the non-Gaussianity of basic signals. The main advantage of this method is that imaging and focusing are achieved using only one transmitting antenna which simplifies the physical implementation drastically. We have simulated the performance of the introduced method in different scenarios such as selective focusing in the presence of scatterers with different materials, sizes and distances. In addition, the effect of noise on TR-ICA and through-the-wall imaging (TWI) are studied. Some of the results are compared to the DORT method. Finally, the validity of this algorithm is verified by performing physical measurements.
Citation
Payman Rasekh, Mojtaba Razavian, Amir Torki, Hossein Khalili Rad, and Reza Safian, "Single-Antenna Time-Reversal Imaging Based on Independent Component Analysis," Progress In Electromagnetics Research M, Vol. 44, 47-58, 2015.
doi:10.2528/PIERM15071701
References

1. Prada, C. and M. Fink, "Eigenmodes of the time reversal operator: A solution to selective focusing in multipletarget media," Wave Motion, Vol. 20, 151-163, September 1994.
doi:10.1016/0165-2125(94)90039-6

2. Fink, M., D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, "Time-reversed acoustics," Reports on Progress in Physics, Vol. 63, No. 12, 1933-1995, 2000.
doi:10.1088/0034-4885/63/12/202

3. Fouda, A. E. and F. L. Teixeira, "Imaging and tracking of targets in clutter using differential time-reversal techniques," Waves in Random and Complex Media, Vol. 22, No. 1, 2012.
doi:10.1080/17455030.2011.557404

4. Kosmas, P. and C. Rappaport, "Time reversal with the fdtd method for microwave breast cancer detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 2317-2323, July 2005.

5. Kosmas, P. and C. Rappaport, "FDTD-based time reversal for microwave breast cancer detection-localization in three dimensions," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 1921-1927, June 2006.
doi:10.1109/TMTT.2006.871994

6. Yavuz, M. and F. Teixeira, "Full time-domain dort for ultrawideband electromagnetic fields in dispersive, random inhomogeneous media," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2305-2315, 2006.
doi:10.1109/TAP.2006.879196

7. Lehman, S. K. and A. J. Devaney, "Transmission mode time-reversal super-resolution imaging," The Journal of the Acoustical Society of America, May 2003.

8. Yavuz, M. and F. Teixeira, "Space frequency ultrawideband time-reversal imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 4, 1115-1124, 2008.
doi:10.1109/TGRS.2008.915755

9. Scholz, B., "Towards virtual electrical breast biopsy: Space-frequency music for trans-admittance data," IEEE Transactions on Medical Imaging, Vol. 21, No. 6, 588-595, 2002.
doi:10.1109/TMI.2002.800609

10. Razavian, M., M. Hosseini, and R. Safian, "Time-reversal imaging using one transmitting antenna based on independent component analysis," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 9, 1574-1578, 2014.
doi:10.1109/LGRS.2014.2301724

11. Comon, P., "Independent component analysis, a new concept?," Signal Processing, Vol. 36, No. 3, 287-314, Higher Order Statistics, 1994.
doi:10.1016/0165-1684(94)90029-9

12. Jutten, C., "Source separation: From dusk till dawn," 2nd Int. Workshop on Independent Component Analysis and Blind Source Separation, 15-26, 2000.

13. Jutten, C. and J. Herault, "Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture," Signal Processing, Vol. 24, No. 1, 1-10, 1991.
doi:10.1016/0165-1684(91)90079-X

14. Hyvrinen, A., J. Karhunen, and E. Oja, Independent Component Analysis, John Wiley & Sons, Inc., May 2001.
doi:10.1002/0471221317.ch1

15. Bell, A. J. and T. J. Sejnowski, "An information-maximization approach to blind separation and blind deconvolution," Neural Computation, Vol. 7, 1129-1159, April 2008.

16. Cardoso, J.-F. and A. Souloumiac, "Blind beamforming for non-Gaussian signals," IEE Proceedings F (Radar and Signal Processing), Vol. 140, 362370, December 1993.

17. Hyvarinen, A., "Fast and robust fixed-point algorithms for independent component analysis," IEEE Transactions on Neural Networks, Vol. 10, No. 3, 626-634, 1999.
doi:10.1109/72.761722

18. Moss, C., F. Teixeira, Y. Yang, and J.-A. Kong, "Finite-difference time-domain simulation of scattering from objects in continuous random media," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 1, 178-186, 2002.
doi:10.1109/36.981359

19. Ishimaru, A., "Wave propagation and scattering in random media and rough surfaces," Proceedings of the IEEE, Vol. 79, No. 10, 1359-1366, 1991.
doi:10.1109/5.104210

20. Frisch, U., "Wave propagation in random media," Probabilitistic Methods in Applied Mathematics, 1968.

21. Harris, F., "On the use of windows for harmonic analysis with the discrete fourier transform," Proceedings of the IEEE, Vol. 66, No. 1, 51-83, 1978.
doi:10.1109/PROC.1978.10837

22. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal MUSIC method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408

23. Bardak, C. and M. Saed, "Through the wall microwave imaging using fdtd time reversal algorithm," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 528-529, July 2013.