1. Stillinger, F. H., "Axiomatic basis for spaces with noninteger dimension," Journal of Mathematical Physics, Vol. 18, No. 6, 1224-1234, 1977.
doi:10.1063/1.523395
2. Muslih, S. I. and O. P. Agrawal, "A scaling method and its applications to problems in fractional dimensional space," Journal of Mathematical Physics, Vol. 50, No. 12, 123501, 2009.
doi:10.1063/1.3263940
3. Bollini, C. G. and J. J. Giambiagi, "Dimensional renorinalization: The number of dimensions as a regularizing parameter," Il Nuovo Cimento, Vol. 12, No. 1, 20-26, 1972.
4. Muslih, S. I., "Solutions of a particle with fractional δ-potential in a fractional dimensional space," International Journal of Theoretical Physics, Vol. 49, No. 9, 2095-2104, 2010.
doi:10.1007/s10773-010-0396-0
5. Wilson, K. G., "Quantum field-theory models in less than 4 dimensions," Physical Review D, Vol. 7, No. 10, 2911, 1973.
doi:10.1103/PhysRevD.7.2911
6. Guo, X. and M. Xu, "Some physical applications of fractional Schrödinger equation," Journal of Mathematical Physics, Vol. 47, No. 8, 082104, 2006.
doi:10.1063/1.2235026
7. Engheta, N., "Use of fractional integration to propose some “Fractional” solutions for the scalar Helmholtz equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996.
8. Palmer, C. and P. N. Stavrinou, "Equations of motion in a non-integer-dimensional space," Journal of Physics A: Mathematical and General, Vol. 37, No. 27, 6987, 2004.
doi:10.1088/0305-4470/37/27/009
9. Muslih, S. I. and D. Baleanu, "Fractional multipoles in fractional space," Nonlinear Analysis: Real World Applications, Vol. 8, No. 1, 198-203, 2007.
doi:10.1016/j.nonrwa.2005.07.001
10. Calcagni, G., "Geometry and field theory in multi-fractional spacetime," Journal of High Energy Physics, Vol. 2012, No. 1, 1-77, 2012.
doi:10.1007/JHEP01(2012)065
11. Ray, S. S., "A new approach for the application of Adomian decomposition method for the solution of fractional space diffusion equation with insulated ends," Applied Mathematics and Computation, Vol. 202, No. 2, 544-549, 2008.
doi:10.1016/j.amc.2008.02.043
12. Tarasov, V. E., "Fractional hydrodynamic equations for fractal media," Annals of Physics, Vol. 318, No. 2, 286-307, 2005.
doi:10.1016/j.aop.2005.01.004
13. Barnsley, M. F., Fractals Everywhere: New Edition, Courier Dover Publications, 2013.
14. Baleanu, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Analysis: Real World Applications, Vol. 11, No. 1, 288-292, 2010.
doi:10.1016/j.nonrwa.2008.10.058
15. Wang, Z. S. and B. W. Lu, "The scattering of electromagnetic waves in fractal media," Waves in Random Media, Vol. 4, No. 1, 97, 1994.
doi:10.1088/0959-7174/4/1/010
16. Asad, H., M. J. Mughal, M. Zubair, and Q. A. Naqvi, "Electromagnetic Green’s function for fractional space," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1903-1910, 2012.
doi:10.1080/09205071.2012.720748
17. Zubair, M., M. J. Mughal, and Q. A. Naqvi, Electromagnetic Fields and Waves in Fractional Dimensional Space, Springer, 2012.
doi:10.1007/978-3-642-25358-4
18. Tarasov, V. E., "Possible experimental test of continuous medium model for fractal media," Physics Letters A, Vol. 341, No. 5, 467-472, 2005.
doi:10.1016/j.physleta.2005.05.022
19. Marwat, S. K. and M. J. Mughal, "Characteristics of multilayered metamaterial structures embedded in fractional space for terahertz application," Progress In Electromagnetics Research, Vol. 144, 229-239, 2014.
doi:10.2528/PIER13110603
20. Sihvola, A., "Metamaterials in electromagnetics," Metamaterials, Vol. 1, No. 1, 2-11, 2007.
doi:10.1016/j.metmat.2007.02.003
21. Silva, A., F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, "Performing mathematical operations with metamaterials," Science, Vol. 343, No. 6167, 160-163, 2014.
doi:10.1126/science.1242818
22. Ziolkowski, R. W. and A. D. Kipple, "Causality and double-negative metamaterials," Physical Review E, Vol. 68, No. 2, 026615, 2003.
doi:10.1103/PhysRevE.68.026615
23. Hrabar, S., N. Engheta, and R. Ziolkowsky, "Waveguide experi-ments to characterize the properties of SNG and DNG metamaterials," Metamaterials: Physics and Engineering Explorations, 2006.
24. Wang, B., J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Chiral metamaterials: Simulations and experiments," Journal of Optics A: Pure and Applied Optics, Vol. 11, No. 11, 114003, 2009.
doi:10.1088/1464-4258/11/11/114003
25. Sabah, C., "Left-handed chiral metamaterials," Central European Journal of Physics, Vol. 6, No. 4, 872-878, 2008.
26. Wongkasem, N., A. Akyurtlu, and K. A. Marx, "Development of double negative chiral metamaterials in the visible regime," Antennas and Propagation Society International Symposium 2006, IEEE, 757-760, IEEE, 2006.
doi:10.1109/APS.2006.1710637
27. Sabah, C., H. Tugrul Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, "Transmission tunneling through the multilayer double-negative and double-positive slabs," Progress In Electromagnetics Research, Vol. 138, 293-306, 2013.
doi:10.2528/PIER13013110
28. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306
29. Asad, H., M. Zubair, and M. J. Mughal, "Reflection and transmission at dielectric-fractal interface," Progress In Electromagnetics Research, Vol. 125, 543-558, 2012.
doi:10.2528/PIER12012402
30. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, 1994.
31. Sabah, C. and S. Uckun, "Physical features of left-handed mirrors in millimeter wave band," Journal of Optoelectronics and Advanced Materials, Vol. 9, No. 8, 2480-2484, 2007.
32. Balanis, C. A., Advanced Engineering Electromagnetics, Vol. 111, John Wiley and Sons, 2012.
33. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847