Vol. 44
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-10-16
Transmission through Double Positive --- Dispersive Double Negative Chiral Metamaterial Structure in Fractional Dimensional Space
By
Progress In Electromagnetics Research M, Vol. 44, 81-89, 2015
Abstract
This paper presents the frequency response of a stratified structure consisting of double-positive and dispersive double-negative chiral metamaterial layers. The structure is inserted between two half-spaces of fractional dimensions. Transfer matrix approach is used for the analysis. Dispersion within the double-negative chiral layers is realized by using Lorentz/Drude model. The effect of fractionality of the dimension is particularly investigated. Numerical results, for a five layer structure, are presented for various parametric values of the stratified structure and fractionality of the host media. It is shown that the fractionality of host media can be used as yet another parameter to control the frequency response of such a filtering structure. For integral values of dimensions, the results are shown to converge to the classical results thus validating the analysis.
Citation
Aqeel Ahmad, Aqeel Abbas Syed, and Qaisar Naqvi, "Transmission through Double Positive --- Dispersive Double Negative Chiral Metamaterial Structure in Fractional Dimensional Space," Progress In Electromagnetics Research M, Vol. 44, 81-89, 2015.
doi:10.2528/PIERM15062404
References

1. Stillinger, F. H., "Axiomatic basis for spaces with noninteger dimension," Journal of Mathematical Physics, Vol. 18, No. 6, 1224-1234, 1977.
doi:10.1063/1.523395

2. Muslih, S. I. and O. P. Agrawal, "A scaling method and its applications to problems in fractional dimensional space," Journal of Mathematical Physics, Vol. 50, No. 12, 123501, 2009.
doi:10.1063/1.3263940

3. Bollini, C. G. and J. J. Giambiagi, "Dimensional renorinalization: The number of dimensions as a regularizing parameter," Il Nuovo Cimento, Vol. 12, No. 1, 20-26, 1972.

4. Muslih, S. I., "Solutions of a particle with fractional δ-potential in a fractional dimensional space," International Journal of Theoretical Physics, Vol. 49, No. 9, 2095-2104, 2010.
doi:10.1007/s10773-010-0396-0

5. Wilson, K. G., "Quantum field-theory models in less than 4 dimensions," Physical Review D, Vol. 7, No. 10, 2911, 1973.
doi:10.1103/PhysRevD.7.2911

6. Guo, X. and M. Xu, "Some physical applications of fractional Schrödinger equation," Journal of Mathematical Physics, Vol. 47, No. 8, 082104, 2006.
doi:10.1063/1.2235026

7. Engheta, N., "Use of fractional integration to propose some “Fractional” solutions for the scalar Helmholtz equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996.

8. Palmer, C. and P. N. Stavrinou, "Equations of motion in a non-integer-dimensional space," Journal of Physics A: Mathematical and General, Vol. 37, No. 27, 6987, 2004.
doi:10.1088/0305-4470/37/27/009

9. Muslih, S. I. and D. Baleanu, "Fractional multipoles in fractional space," Nonlinear Analysis: Real World Applications, Vol. 8, No. 1, 198-203, 2007.
doi:10.1016/j.nonrwa.2005.07.001

10. Calcagni, G., "Geometry and field theory in multi-fractional spacetime," Journal of High Energy Physics, Vol. 2012, No. 1, 1-77, 2012.
doi:10.1007/JHEP01(2012)065

11. Ray, S. S., "A new approach for the application of Adomian decomposition method for the solution of fractional space diffusion equation with insulated ends," Applied Mathematics and Computation, Vol. 202, No. 2, 544-549, 2008.
doi:10.1016/j.amc.2008.02.043

12. Tarasov, V. E., "Fractional hydrodynamic equations for fractal media," Annals of Physics, Vol. 318, No. 2, 286-307, 2005.
doi:10.1016/j.aop.2005.01.004

13. Barnsley, M. F., Fractals Everywhere: New Edition, Courier Dover Publications, 2013.

14. Baleanu, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Analysis: Real World Applications, Vol. 11, No. 1, 288-292, 2010.
doi:10.1016/j.nonrwa.2008.10.058

15. Wang, Z. S. and B. W. Lu, "The scattering of electromagnetic waves in fractal media," Waves in Random Media, Vol. 4, No. 1, 97, 1994.
doi:10.1088/0959-7174/4/1/010

16. Asad, H., M. J. Mughal, M. Zubair, and Q. A. Naqvi, "Electromagnetic Green’s function for fractional space," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1903-1910, 2012.
doi:10.1080/09205071.2012.720748

17. Zubair, M., M. J. Mughal, and Q. A. Naqvi, Electromagnetic Fields and Waves in Fractional Dimensional Space, Springer, 2012.
doi:10.1007/978-3-642-25358-4

18. Tarasov, V. E., "Possible experimental test of continuous medium model for fractal media," Physics Letters A, Vol. 341, No. 5, 467-472, 2005.
doi:10.1016/j.physleta.2005.05.022

19. Marwat, S. K. and M. J. Mughal, "Characteristics of multilayered metamaterial structures embedded in fractional space for terahertz application," Progress In Electromagnetics Research, Vol. 144, 229-239, 2014.
doi:10.2528/PIER13110603

20. Sihvola, A., "Metamaterials in electromagnetics," Metamaterials, Vol. 1, No. 1, 2-11, 2007.
doi:10.1016/j.metmat.2007.02.003

21. Silva, A., F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, "Performing mathematical operations with metamaterials," Science, Vol. 343, No. 6167, 160-163, 2014.
doi:10.1126/science.1242818

22. Ziolkowski, R. W. and A. D. Kipple, "Causality and double-negative metamaterials," Physical Review E, Vol. 68, No. 2, 026615, 2003.
doi:10.1103/PhysRevE.68.026615

23. Hrabar, S., N. Engheta, and R. Ziolkowsky, "Waveguide experi-ments to characterize the properties of SNG and DNG metamaterials," Metamaterials: Physics and Engineering Explorations, 2006.

24. Wang, B., J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Chiral metamaterials: Simulations and experiments," Journal of Optics A: Pure and Applied Optics, Vol. 11, No. 11, 114003, 2009.
doi:10.1088/1464-4258/11/11/114003

25. Sabah, C., "Left-handed chiral metamaterials," Central European Journal of Physics, Vol. 6, No. 4, 872-878, 2008.

26. Wongkasem, N., A. Akyurtlu, and K. A. Marx, "Development of double negative chiral metamaterials in the visible regime," Antennas and Propagation Society International Symposium 2006, IEEE, 757-760, IEEE, 2006.
doi:10.1109/APS.2006.1710637

27. Sabah, C., H. Tugrul Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, "Transmission tunneling through the multilayer double-negative and double-positive slabs," Progress In Electromagnetics Research, Vol. 138, 293-306, 2013.
doi:10.2528/PIER13013110

28. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306

29. Asad, H., M. Zubair, and M. J. Mughal, "Reflection and transmission at dielectric-fractal interface," Progress In Electromagnetics Research, Vol. 125, 543-558, 2012.
doi:10.2528/PIER12012402

30. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, 1994.

31. Sabah, C. and S. Uckun, "Physical features of left-handed mirrors in millimeter wave band," Journal of Optoelectronics and Advanced Materials, Vol. 9, No. 8, 2480-2484, 2007.

32. Balanis, C. A., Advanced Engineering Electromagnetics, Vol. 111, John Wiley and Sons, 2012.

33. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847