Vol. 152
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-07-29
Extremely Sub-Wavelength Negative Index Metamaterial
By
Progress In Electromagnetics Research, Vol. 152, 95-104, 2015
Abstract
We present an extremely sub-wavelength negative index metamaterial structure operating at radio frequency. The unit cell of the metamaterial consists of planar spiral and meandering wire structures separated by dielectric substrate. The ratio of the free space wavelength to unit cell size in the propagation direction is record breaking 1733 around the resonance frequency. The proposed metamaterial also possesses the most extreme refractive index of -109 that has been recorded to date. Underlying magnetic and electric response originate from the spiral and meandering wire, respectively. We show that the meandering wire is the key element to improve the transparency of the negative index metamaterial.
Citation
Xu Zhang, Elvis Usi, Suhail K. Khan, Mehdi Sadatgol, and Durdu Oe Guney, "Extremely Sub-Wavelength Negative Index Metamaterial," Progress In Electromagnetics Research, Vol. 152, 95-104, 2015.
doi:10.2528/PIER15061807
References

1. Walser, R. M., "Electromagnetic metamaterials," Complex Mediums II: Beyond Linear Isotropic Dielectrics, A. Lakhtakia, W. S. Weiglhofer, and I. J. Hodgkinson, eds., Proc. SPIE, Vol. 4467, 1-15, 2001.

2. Cai, W. and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Academic, 2010.

3. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

5. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247-8256, 2006.
doi:10.1364/OE.14.008247

6. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

7. Zhang, X. and Z. Liu, "Superlenses to overcome the diffraction limit," Nat. Mater., Vol. 7, 435-441, 2008.
doi:10.1038/nmat2141

8. Rho, J., Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nat. Commun., Vol. 1, 143, 2010.
doi:10.1038/ncomms1148

9. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

10. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493

11. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

12. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

13. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Commun., Vol. 2, 517, 2011.
doi:10.1038/ncomms1528

14. Guney, D. O. and D. A. Meyer, "Negative refraction gives rise to the Klein paradox," Phys. Rev. A, Vol. 79, 063834, 2009.
doi:10.1103/PhysRevA.79.063834

15. Smolyaninov, I. I. and E. E. Narimanov, "Metric signature transitions in optical metamaterials," Phys. Rev. Lett., Vol. 105, 067402, 2010.
doi:10.1103/PhysRevLett.105.067402

16. Bulu, I., H. Caglayan, K. Aydin, and E. Ozbay, "Compact size highly directive antennas based on the SRR metamaterial medium," New J. Phys., Vol. 7, 223, 2005.
doi:10.1088/1367-2630/7/1/223

17. Odabasi, H., F. Teixeira, and D. O. Guney, "Electrically small, complementary electric-field-coupled resonator antennas," J. Appl. Phys., Vol. 113, 084903, 2013.
doi:10.1063/1.4793090

18. Vora, A., J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Guney, "Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics," Sci. Rep., Vol. 4, 4901, 2014.
doi:10.1038/srep04901

19. Aslam, M. I. and D. O. Guney, "On negative index metamaterial spacers and their unusual optical properties," Progress In Electromagnetics Research B, Vol. 47, 203-217, 2013.
doi:10.2528/PIERB12111908

20. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008.
doi:10.1038/nature07247

21. Guney, D. O., Th. Koschny, M. Kafesaki, and C. M. Soukoulis, "Connected bulk negative index photonic metamaterials," Opt. Lett., Vol. 34, 506-508, 2009.
doi:10.1364/OL.34.000506

22. Guney, D. O., Th. Koschny, and C. M. Soukoulis, "Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial," Opt. Express, Vol. 18, 12348-12353, 2010.
doi:10.1364/OE.18.012348

23. Garcia-Meca, C., J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Phys. Rev. Lett., Vol. 106, 067402, 2011.
doi:10.1103/PhysRevLett.106.067402

24. Aslam, M. I. and D. O. Guney, "Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum," Phys. Rev. B, Vol. 84, 195465, 2011.
doi:10.1103/PhysRevB.84.195465

25. Aslam, M. I. and D. O. Guney, "Dual band double-negative polarization independent metamaterial for the visible spectrum," J. Opt. Soc. Am. B, Vol. 29, 2839-2847, 2012.
doi:10.1364/JOSAB.29.002839

26. Chen, W.-C., C. M. Bingham, K. M. Mak, N. W. Caira, and W. J. Padilla, "Extremely sub-wavelength planar magnetic metamaterials," Phys. Rev. B, Vol. 85, 201104, 2012.
doi:10.1103/PhysRevB.85.201104

27. Decker, M., I. Staude, I. I. Shishkin, K. B. Samusev, P. Parkinson, V. K. A. Sreenivasan, A. Minovich, A. E. Miroshnichenko, A. Zvyagin, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, "Dual-channel spontaneous emission of quantum dots in magnetic metamaterials," Nat. Commun., Vol. 4, 2949, 2013.
doi:10.1038/ncomms3949

28. Plum, E., V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, "Towards the lasing spaser: Controlling metamaterial optical response with semiconductor quantum dots," Opt. Express, Vol. 17, 8548-8551, 2009.
doi:10.1364/OE.17.008548

29. Moritake, Y., K. Nakayama, T. Suzuki, H. Kurosawa, T. Kodama, S. Tomita, H. Yanagi, and T. Ishihara, "Lifetime reduction of a quantum emitter with quasiperiodic metamaterials," Phys. Rev. B, Vol. 90, 075146, 2014.
doi:10.1103/PhysRevB.90.075146

30. Benz, A., S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R.Wendt, M. B. Sinclair, F. Capolino, and I. Brener, "Strong coupling in the sub-wavelength limit using metamaterial nanocavities," Nat. Commun., Vol. 4, 2882, 2013.
doi:10.1038/ncomms3882

31. Guney, D. O. and D. A. Meyer, "Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity," J. Opt. Soc. Am. B, Vol. 24, 283-294, 2007.
doi:10.1364/JOSAB.24.000283

32. Guney, D. O. and D. A. Meyer, "Integrated conditional teleportation and readout circuit based on a photonic crystal single chip," J. Opt. Soc. Am. B, Vol. 24, 391-397, 2007.
doi:10.1364/JOSAB.24.000391

33. Brune, M., F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, "Quantum Rabi oscillation: A direct test of field quantization in a cavity," Phys. Rev. Lett., Vol. 76, 1800, 1996.
doi:10.1103/PhysRevLett.76.1800

34. Brune, M., E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, "Observing the progressive decoherence of the ``meter'' in a quantum measurement," Phys. Rev. Lett., Vol. 77, 4887, 1996.
doi:10.1103/PhysRevLett.77.4887

35. Turchette, Q. A., D. Kielpinski, B. E. King, D. Leibfreid, D. M. Meekhof, C. J. Myatt, M. A. Rowe, C. A. Sackett, C. S. Wood, W. M. Itano, C. Monroe, and D. J. Wineland, "Heating of trapped ions from the ground state," Phys. Rev. A, Vol. 61, 063418, 2000.
doi:10.1103/PhysRevA.61.063418

36. Raimond, J. M., M. Brune, and S. Haroche, "Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys., Vol. 73, 565, 2001.
doi:10.1103/RevModPhys.73.565

37. Vandersypen, L. M. K., M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, "Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance," Nature, Vol. 414, 883, 2001.
doi:10.1038/414883a

38. Kielpinski, D., C. Monroe, and D. J. Wineland, "Architecture for a large-scale ion-trap quantum computer," Nature, Vol. 417, 709, 2002.
doi:10.1038/nature00784

39. Vandersypen, L. M. K. and I. L. Chuang, "NMR techniques for quantum control and computation," Rev. Mod. Phys., Vol. 76, 1037, 2005.
doi:10.1103/RevModPhys.76.1037

40. Ospelkaus, C., U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfreid, and D. J. Wineland, "Microwave quantum logic gates for trapped ions," Nature, Vol. 476, 181, 2011.
doi:10.1038/nature10290

41. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

42. Menzel, C., C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, "Retrieving effective parameters for metamaterials at oblique incidence," Phys. Rev. B, Vol. 77, 195328, 2008.
doi:10.1103/PhysRevB.77.195328

43. Koschny, Th., P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B, Vol. 71, 245105, 2005.
doi:10.1103/PhysRevB.71.245105

44. Zhen, L., J. T. Jiang, W. Z. Shao, and C. Y. Xu, "Resonance-antiresonance electromagnetic behavior in a disordered dielectric composite," Appl. Phys. Lett., Vol. 90, 142907, 2007.
doi:10.1063/1.2719023

45. Smigaj, W. and B. Gralak, "Validity of the effective-medium approximation of photonic crystals," Phys. Rev. B, Vol. 77, 235445, 2008.
doi:10.1103/PhysRevB.77.235445

46. Tserkezis, C., "Effective parameters for periodic photonic structures of resonant elements," J. Phys: Condens. Matter, Vol. 21, 155404, 2009.
doi:10.1088/0953-8984/21/15/155404

47. Ludwig, A. and K. J. Webb, "Accuracy of effective medium parameter extraction procedures for optical metamaterials," Phys. Rev. B, Vol. 81, 113103, 2010.
doi:10.1103/PhysRevB.81.113103

48. Alu, A., "Restoring the physical meaning of metamaterial constitutive parameters,", arXiv:1012.1353, Submitted on Dec. 6, 2010.

49. Alu, A., "First-principles homogenization theory for periodic metamaterials," Phys. Rev. B, Vol. 84, 075153, 2011.
doi:10.1103/PhysRevB.84.075153

50. Kolb, P. W., T. S. Salter, J. A. McGee, H. D. Drew, and W. J. Padilla, "Extreme subwavelength electric GHz metamaterials," J. Appl. Phys., Vol. 110, 054906, 2011.
doi:10.1063/1.3633213

51. Erentok, A., R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B. Popa, T. Hand, D. C. Vier, and S. Schultz, "Lumped element-based, highly sub-wavelength, negative index metamaterials at UHF frequencies," J. Appl. Phys., Vol. 104, 034901, 2008.
doi:10.1063/1.2959377

52. Choi, M., S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature, Vol. 470, 369-373, 2011.
doi:10.1038/nature09776

53. Zhang, X., S. Debnath, and D. O. Guney, "Hyperbolic metamaterial feasible for fabrication with direct laser writing processes," J. Opt. Soc. Am. B, Vol. 32, 1013-1021, 2015.
doi:10.1364/JOSAB.32.001013

54. Rill, M. S., C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nat. Mater., Vol. 7, 543-546, 2008.
doi:10.1038/nmat2197

55. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, 1513-1515, 2009.
doi:10.1126/science.1177031

56. Rill, M. S., C. E. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, "Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation," Opt. Lett.,, Vol. 34, 19-21, 2009.
doi:10.1364/OL.34.000019

57. Guney, D. O., Th. Koschny, and C. M. Soukoulis, "Reducing ohmic losses in metamaterials by geometric tailoring," Phys. Rev. B, Vol. 80, 125129, 2009.
doi:10.1103/PhysRevB.80.125129

58. Zhang, S., W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express, Vol. 13, 4922-4930, 2005.
doi:10.1364/OPEX.13.004922

59. Economou, E. N., Th. Koschny, and C. M. Soukoulis, "Strong diamagnetic response of in split-ringresonator metamaterials: Numerical study and two-loop model," Phys. Rev. B, Vol. 77, 092401, 2008.
doi:10.1103/PhysRevB.77.092401

60. Penciu, R. S., K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Opt. Express, Vol. 16, 18131-18144, 2008.
doi:10.1364/OE.16.018131

61. Qin, G., J.-F. Wang, M.-B. Yan, W. Chen, H.-Y. Chen, and Y.-F. Li, "Lowering plasma frequency by enhancing the effective mass of electrons: A route to deep sub-wavelength metamaterials," Chin. Phys. B, Vol. 22, 087302, 2013.
doi:10.1088/1674-1056/22/8/087302