Vol. 55
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-08-21
Improvement of the Equivalent Circuit Method for Analysis of Frequency Selective Surfaces Using Genetic Algorithms and Rational Algebraic Models
By
Progress In Electromagnetics Research Letters, Vol. 55, 67-74, 2015
Abstract
In this paper, we propose an enhancement of the Equivalent Circuit Method (ECM) for analysis of frequency selective surface (FSS) with square loop geometry of the unit cell. For this, genetic algorithms and rational algebraic models are used to obtain a more accurate value of the effective electrical permittivity (εeff). We use simulated data obtained with a commercial software to adjust some parameters. So, genetic algorithm is used to obtain a better value of an exponent that calculates εeff minimizing the rational algebraic models. In this paper, this is done for the square loop geometry, but the methodology can be extended to any geometry. Finally, prototypes are built and the technique is validated.
Citation
Gilmara Linhares R. Araujo, Antonio Luiz Campos, and Allan de Medeiros Martins, "Improvement of the Equivalent Circuit Method for Analysis of Frequency Selective Surfaces Using Genetic Algorithms and Rational Algebraic Models," Progress In Electromagnetics Research Letters, Vol. 55, 67-74, 2015.
doi:10.2528/PIERL15060803
References

1. Wu, T. K., Frequency Selective Surface and Grid Array, John Wiley & Sons, 1995.

2. Harms, P., R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 9, 1317-1324, 1994.
doi:10.1109/8.318653

3. Weile, D. S., E. Michielssen, and K. Gallivan, "Reduced order modeling of multiscreen frequency selective surfaces using Krylov-based rational interpolation," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 5, 801-813, 2001.
doi:10.1109/8.929635

4. Silva, P. H. F. and A. L. P. S. Campos, "Fast and accurate modelling of frequency-selective surfaces using a new modular neural network configuration of multilayer perceptrons," IET Microwave Antennas & Propagation, Vol. 2, No. 5, 503-511, 2008.
doi:10.1049/iet-map:20080066

5. Yilmaz, A. E. and M. Kuzuoglu, "Design of the square loop frequency selective surfaces with particle swarm optimization via the equivalent circuit model," Radioengineering, Vol. 18, No. 2, 95-102, 2009.

6. Genovesi, S., R. Mittra, A. Monorchio, and G. Manara, "Particle swarm optimization for the design of frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 277-279, 2006.
doi:10.1109/LAWP.2006.875900

7. Silva, M. R., C. L. Nóbrega, P. H. F. Silva, and A. G. d’Assunção, "Optimization of FSS with Sierpinski island fractal elements using population-based search algorithms and MLP neural network," Microwave and Optical Technology Letters, Vol. 56, No. 4, 827-831, 2014.
doi:10.1002/mop.28214

8. Campos, A. L. P. S., A. M. Martins, and V. A. Almeida Filho, "Synthesis of frequency selective surfaces using genetic algorithm combined with the equivalent circuit method," Microwave and Optical Technology Letters, Vol. 54, No. 8, 1893-1897, 2012.
doi:10.1002/mop.26953

9. Araújo, W. C., H. W. C. Lins, A. G. d’Assunção, and J. L. G. Medeiros, "A bioinspired hybrid optimization algorithm for designing broadband frequency selective surfaces," Microwave and Optical Technology Letters, Vol. 56, No. 2, 329-333, 2014.
doi:10.1002/mop.28043

10. Marcuvitz, N., Waveguide Handbook, McGraw-Hill, 1951.

11. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electronics Letters, Vol. 18, No. 7, 294-296, 1982.
doi:10.1049/el:19820201

12. Lee, C. K. and R. J. Langley, "Equivalent circuit models for frequency selective surfaces at oblique angles of incidence," IEE Proceedings, Vol. 132, No. 6, 395-399, 1985.

13. Wang, Z. L., K. Hashimoto, N. Shinohara, and H. Matsumoto, "Frequency-selective surface for microwave power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 10, 2039-2042, 1999.
doi:10.1109/22.795083

14. Langley, R. J. and E. A. Parker, "Double-square frequency selective surfaces and their equivalent circuit," Electronics Letters, Vol. 19, No. 17, 675-677, 1983.
doi:10.1049/el:19830460

15. Leonard, T. W. and J. W. Cofer, "A new equivalent circuit representation for the Jerusalem cross," IEE Conference Publ., Vol. 169, 65-69, 1978.

16. Langley, R. J. and A. J. Drinkwater, "Improved empirical model for the Jerusalem cross," IEE Proceedings, Vol. 129, No. 1, 1-6, 1982.
doi:10.1049/ip-d.1982.0001

17. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model," IEEE Antennas and Propagation Magazine, Vol. 54, No. 4, 36-48, 2012.
doi:10.1109/MAP.2012.6309153

18. Yatsenko, V. V., S. A. Tretyakov, S. I. Maslovski, and A. A. Sochava, "Higher order impedance boundary conditions for sparse wire grids," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 5, 720-727, 2000.
doi:10.1109/8.855490

19. Conrad, B., Differential geometry handouts, Stanford University, Available at: http://math.stanford.edu/∼conrad/diffgeomPage/handouts.html.