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Abstract—In this paper, we propose an enhancement of the Equivalent Circuit Method (ECM) for
analysis of frequency selective surfaces (FSS) with square loop geometry of the unit cell. For this,
genetic algorithms and rational algebraic models are used to obtain a more accurate value of the effective
electrical permittivity (εeff ). We use simulated data obtained with a commercial software to adjust some
parameters. So, genetic algorithm is used to obtain a better value of an exponent that calculates εeff

minimizing the rational algebraic models. In this paper, this is done for the square loop geometry, but
the methodology can be extended to any geometry. Finally, prototypes are built and the technique is
validated.

1. INTRODUCTION

Nowadays a number of theoretical researchers have developed a growing interest in the use of the FSS
as bi-dimensional periodic arrays and its applications in several electronic devices. Among the several
techniques to approach the problem, the Method of Moments (MoM) [1], Finite Differences on Time
Domain (FDTD) [2], Hybrid methods [3], and artificial intelligence techniques [4] can be cited as the
most used numerical techniques that perform full wave analysis.

Because of their frequency selective properties, FSS are incorporated in a wide variety of
applications, and the frequency behavior of each FSS depends on different variables, such as the geometry
of metal patches, periodicity of the array, as well as the thickness and dielectric characteristics of the
substrate, in which we can use optimization procedures to design a structure with a specific performance.
Usually, in the FSS problems, the goal is to find physical parameters with optimized performance of the
FSS: the relevant parameter selection is a process that could depend on the trial-error method. In this
sense, some nature inspired population based methods such as Genetic Algorithm (GA), Differential
Evolution Strategy (DES), and Particle Swarm Optimization (PSO) can be applied for this purpose.

Several authors have applied these techniques for FSS design. For example, in [5, 6] the authors used
particle swarm optimization to design FSS. In [7] a very efficient optimization population-based search
algorithm combined with a multi-layer perceptron neural network was employed to the optimization of
FSS with fractal geometries. A genetic algorithm was used to design frequency selective surfaces in [8].
A bioinspired hybrid optimization algorithm was proposed in [9] for designing broadband frequency
selective surfaces.

In almost all of these papers, the authors used a limited set of variables’ values usually provided by
commercial software applications where several simulations must be done. Also, these simulations
demand huge computational effort, and the design possibilities are limited by this set. Using an
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analytical method, one can limit the possibilities to fit with the dimensions that can be used to
manufacturing the FSS, where the ECM rises as an appropriate method to perform such task.

The equivalent circuit for modeling of FSS requires very limited computing resources compared to
methods of full-wave analysis, and therefore is useful for fast predicting of structure performances. The
modeling also provides a useful physical insight into how the FSS functions when their parameters are
changed, and it can be executed recursively, many times as necessary.

Several authors presented, in literature, modeling for different geometries, involving the ECM [10–
16]. In all of these papers, some limitations of the technique can be noted. This is due to the fact that
the equivalent impedance of a printed frequency selective surface on a dielectric substrate is modified
proportionally to the dielectric constant and thickness of the dielectric that supports the structure. An
increase in thickness of the substrate while maintaining the relative permittivity fixed causes a gradual
reduction in the resonant frequency of the FSS.

In fact, the resonant frequency of an FSS, in the presence of a thick dielectric substrate is reduced
by a factor proportional to

√
(εr + 1)/2 [17]. This simplified approach is also acceptable in quasi-static

regime (p � λ, where p is the periodicity of the array and λ the wavelength), since in this frequency
range, the impedance value of the FSS is high and purely capacitive, and the multiplication by effective
permittivity almost did not disturb the transmission coefficient. This approach is not suitable if the
periodic structure cannot be regarded as homogeneous.

The presence of thin dielectric substrates involves a relevant number of Floquet modes. Given the
complexity of the problem, a closed formula based on Green function cannot be obtained. In [18], the
authors proposed the derivation of a simple interpolation formula, which corresponds exactly to the
variation of the effective permittivity as a function of the thickness of the dielectric.

Such simplified approach is useful for understanding the physics of the problem, as it is also a
good way to reach a preliminary estimate of the response of an FSS printed on a substrate. The
expression of interpolation that best fits the behavior of effective electrical permittivity as a function
of the thickness of the dielectric was obtained in [18] by manipulation of a graphical function which
satisfies the limitations mentioned, i.e., the exponential function. The effective electrical permittivity
is given by:

εeff = εr + (εr − 1)
( −1

eNx

)
(1)

where x = 10h/p, N is an exponential factor, which takes into account the slope of the curve. This
parameter varies with the geometry used in the unit cell of the FSS, as a function of the fill factor, or
occupation factor (OF) of the unit cell and of h that is the thickness of the dielectric [18].

In order to have a good approximation of the value of εeff , an appropriate choice for the value of N
(a real number) is an important point. Typically, the authors use an average value for N . This is not
always easy and may lead to less accurate results. Extensive studies may have to be made to obtain an
appropriate value of N because different thicknesses of dielectric substrates need different values of N .

Thus, in this work we propose a technique for determining the value of N given a very broad range
of possibilities using square loop FSS projects as the unit cell geometry. The method is based on genetic
algorithms and differential geometry to obtain rational algebraic models to determine a value of N as
accurate as possible, facilitating new designs of FSS with this geometry.

2. ACQUISITION OF DATA

To obtain data, numerous simulations were conducted for FSS. The simulations of the structures were
performed with a commercial software, which used a full-wave analysis technique (method of moments
as analysis) to obtain accurate results, but with a high computational effort. It was considered a single
substrate, the flame retardant four (FR-4), due to its low cost and ease of supply. In addition, the
value of εr does not affect the value of N . For the simulations obtained with this software we applied
the ECM to adjust the parameter N in order to converge the resonance frequencies obtained with a
commercial software to those generated with ECM.

The physical dimensions of the unit cell are shown in Figure 1 which illustrates only four unit cells.
The number of cells depends on the application. These cells are printed on a dielectric substrate of
thickness h.
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Figure 1. Periodic array used in the analysis.

Figure 2. Convergence of the curve obtained
with a commercial software with adjustment of
the N parameter applying the ECM, for d/p = 0.7
and OF = 8.04%.

Figure 3. Convergence of the curve obtained
with a commercial software with adjustment of
the N parameter applying the ECM, for d/p = 0.9
and OF = 45%.

In all simulations, the thickness of the dielectric ranged from very thin dimensions to thicker
dimensions, in the following way: 0.02 mm, 0.04 mm, 0.08 mm, 0.16 mm, 0.2 mm, 0.4 mm, 0.8 mm and
1.6 mm. This variation covers almost all the most common commercial substrates found in the market.

The dimensions used in simulations were chosen focusing on the application of the FSS at high
frequencies (at the beginning of millimeter waves) to the beginning of the frequency range of microwaves.
Thus, these dimensions generating OF ranging from approximately 5% to 60%. These values generated
periodicity range of 5 to 20 mm. Different fractions of d/p were used to evaluate the effect of this ratio
on the value of N . These ratios ranged from 0.7 to 0.9.

Obtaining the exact values of the parameter N for the convergence of the resonant frequencies of
the FSS took from simulations with a commercial software. We applied the equivalent circuit method in
order to converge the resulting resonance frequency with that obtained with a commercial software. The
value of N was varied until convergence occured. Figures 2 and 3 show the frequency convergence curves
generated using a commercial software and the equivalent circuit method, by adjusting the parameter
N .

The FSS shown in Figure 2 has physical dimensions: p = 5mm, d = 3.5 mm, w = 0.2 mm and
h = 0.02 mm. These physical dimensions give an OF of 8.04%. For this case, the convergence of the
resonant frequency occurred for N = 4.2.

Regarding the FSS shown in Figure 3, the physical dimensions were: p = 20 mm, d = 18 mm,
w = 4mm and h = 0.8 mm. These physical dimensions gave an OF of 45%, which is an extreme
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compared with the previous case. For this case, the convergence of the resonant frequency occurred for
N = 0.61.

3. GROUPING OF DATA

The converging results obtained for N were grouped according to d/p, where d is the length of the loop
and p the periodicity of the periodic array. These results were plotted as a function of the occupation
factor and depending on the thickness of the dielectric. In Figure 4, we can see curves of N as a function
of OF for various thicknesses of dielectric and a ratio of d/p of 0.9 (p = 20 mm, d = 18 mm), and the
dimension of w was varied in order to obtain different values of OF. It can be seen that the curves are
converging as the dielectric thickness increases, which behave as quadratic functions.

In Figure 5, the results of N depending on the thickness of the dielectric (h) for different values of
OF and a d/p ratio equal to 0.75 were plotted. It can be observed that the curves are practically the
same, with no differences between them and a negative exponential behavior.

After that, the 3D curves of N as a function of OF and the dielectric thickness (h) were plotted for
the different ratios of d/p. The 3D curves for N are plotted so that one can, from these curves, analyze

Figure 4. Curves of N as a function of OF, for
different values of h and d/p = 0.90.

Figure 5. Curves of N as a function of h, for
different values of OF and d/p = 0.75.

Figure 6. Curve of N as a function of OF and h, for d/p = 0.866.



Progress In Electromagnetics Research Letters, Vol. 55, 2015 71

the behavior of the same, to obtain a mathematical model that generalizes the obtaining of N from
physical parameters of the structures for each d/p. Figure 6 illustrates the behavior of N as a function
of OF and h, for a ratio d/p equals to 0.866 (p = 15 mm, d = 13 mm).

4. MODELING USING RATIONAL ALGEBRAIC EQUATIONS

Based on the format and shape of the measured curves, we propose a rational algebraic model that
contains 10 parameters (a1, b1, . . ., f1, a2, b2, . . ., f2). The model is of second degree and given by [19]:

H(x, y) =
a1 x2 + f1 x y + b1 x + d1 y2 + e1 y + c1

a2 x2 + f2 x y + b2 x + d2 y2 + e2 y + c2
(2)

In the model, H is N , and the variables x and y are the OF and dielectric thickness (h), respectively.
From [17], we know that measurements of H depend on OF and h. However, we note that H also depends
on d/p. Hence, we model different measurements scenarios.

The motivation behind the rational algebraic model was driven by results in differential
geometry [19] in the study of second degree approximations of manifolds. In this context, H(x, y)
is a function from �2 → �, thus we can approximate by a rational algebraic expression, where � is the
set of real numbers.

With the model at hand, we must fit the measured points to it. In order to do that, we define the
mean square error of the fitted model and the measured points as [19]:

e(a1, b1, . . . , f1, a2, b2, . . . , f2) =
1
N

N∑
i=1

(
Ĥ(xi, yi; a1, b1, . . . , f1, a2, b2, . . . , f2) − Hi

)2
(3)

where the notation Ĥ(xi, yi; a1, b1, . . . , f1, a2, b2, . . . , f2) means that we evaluate (2) with parameters
(a1, b1, . . ., f1, a2, b2, . . ., f2), and Hi is the measured value of H at the points xi and yi.

The aim is to minimize functional (3) with respect to each parameter. This procedure will fit
model (2) to the measured data, thus allowing to make predictions for different values of xi and yi. In
this work, we use genetic algorithms to perform the fit of the parameters (minimizing (3)). In the next
sections we will give details about the genetic algorithm parameters and methodology.

To minimize (3) we use genetic algorithms and obtained values of the unknown coefficients (a1,
b1, . . ., f1, a2, b2, . . ., f2). Thus, 5 rational algebraic models were obtained for each of the ratios d/p
encompassing various physical dimensions for FSS projects over a wide frequency range. To obtain

Figure 7. Curve of N as a function of OF and
h, for d/p = 0.7.

Figure 8. Curve of N as a function of OF and
h, for d/p = 0.9.
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every rational algebraic model genetic algorithms have been shot with a population of 2000 individuals
and 100.000 generations.

Figures 7 and 8 illustrate comparisons of the measured curve with the adjusted curve for d/p = 0.7
(p = 5 mm, d = 3.5 mm) and d/p = 0.9 (p = 20 mm, d = 18 mm), respectively. It is noticed that there
is a good agreement between the curves, which demonstrates the effectiveness of the methodology.

5. MODEL VALIDATION

To validate our modeling, three projects were proposed. These designs involve different dimensions and
different ratios of d/p that are outside of the curves used in modeling, representing an extrapolation
method.

FSS are stop-band filters with resonance frequencies equals to: 3.5 GHz, 6.5 GHz and 9.5 GHz.
Designs were simulated with a commercial software and with the modeling method that we obtained
the value of N for each case. With these values of N , the ECM was used, and the results of the
transmission coefficient were obtained.

Table 1 shows the dimensions obtained in the projects and data used in the proposed algorithm.
To validate the analysis, three arrays were built and experimental results were obtained for each of

the arrays.
In Figure 9 we show a comparison between the simulation results with the commercial software

and ECM and experimental results, to Array 1. We can observe that there is a good agreement
between the results. In fact, the results of the ECM must agree with that of the commercial software
since the modeling was performed on the basis of the results obtained with this software. Differences
between measurements and simulations can be attributed to the manufacturing process and low-quality
dielectrics (inaccurate in height and in the εr value).

Table 1. Physical dimensions of designers and data used in the proposed algorithm.

Array
Resonance

Frequency

(GHz)

Physical

Dimensions

(mm)

Used Data
Obtained N

p d w d/p h (mm) OF (%)

1 3.5 20 18 1.40 0.90 0.8 23.24 0.8832

2 6.5 20 15 2.40 0.75 1.2 34.16 1.0172

3 9.5 10 8 1.32 0.80 1.6 35.27 0.8078

Figure 9. Comparison between measurements
and simulations for Array 1 of Table 1.

Figure 10. Comparison between measurements
and simulations for Array 2 of Table 1.
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Figure 11. Comparison between measurements and simulations for Array 3 of Table 1.

In Figure 10 we show a comparison between the simulation results with commercial software and
ECM, to Array 2. Again, the results of ECM agree with the that of the commercial software, and there
is a little difference between simulated and measured results.

Finally, in Figure 11 we show a comparison between the simulation results with commercial software
and ECM, to Array 3. Again, the results of ECM agree with that of the commercial software and, again
a little difference between simulated and measured results, comparing it with the last simulation.

These differences are not only related to manufacturing problems and dielectrics, but the simulation
parameters settings in the commercial software. Still, ECM showed better agreement with experimental
results with respect to bandwidth than the results obtained with the commercial software.

6. CONCLUSIONS

In this paper, we present a proposal to improve the equivalent circuit method by using a combination
of commercial software with rational algebraic models and genetic algorithms. The technique optimizes
obtaining an appropriate value for N (Eq. (1)), allowing a better convergence of simulations and
measurements. This technique can be extended to all geometries having the equivalent circuit
model determined by simply following the same methodology. In our work, the validation of the
proposed technique was initially verified through simulations in a commercial software and then with
measurements. The good agreement between simulated and measured results suggests that our model
can be successfully used to improve the analysis of FSS devices in several configurations. Once the
results presented here depend on the spatial arrangement of the device, we can extend the use of this
technique to all geometries having the equivalent circuit model determined by simply following the same
methodology.
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