1. Pastorino, M., Microwave Imaging, Wiley, 2010.
doi:10.1002/9780470602492
2. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Inverse Acoustic and Electromagnetic Scattering Theory, Springer, 2012.
3. Aster, R. C., B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, Academic Press, 2013.
4. Bindu, G. N., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802
5. Devaney, A. J., Mathematical Foundations of Imaging, Tomography and Wavefield Inversion, Cambridge University Press, 2012.
doi:10.1017/CBO9781139047838
6. Aftanas, M., "Through-wall imaging with UWB radar system,", Department of Electronics and Multimedia Communications, Technical University of Kosice, 2009.
7. Takagi, T., J. R. Bowler, Y. Yoshida, and Eds., Electromagnetic Nondestructive Evaluation, IOS Press, 1997.
8. Caorsi, S., A. Massa, and M. Pastorino, "A crack identification microwave procedure based on a genetic algorithm for nondestructive testing," IEEE Trans. Antennas Propag., Vol. 49, No. 12, 1812-1820, 2001.
doi:10.1109/8.982464
9. Zorgati, R., B. Duchene, D. Lesselier, and F. Pons, "Eddy current testing of anomalies in conductive materials. I. Qualitative imaging via diffraction tomography techniques," IEEE Trans. Magn., Vol. 27, No. 6, 4416-4437, 1991.
doi:10.1109/20.278657
10. Chien, W., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08012902
11. Cui, T. J., W. C. Chew, A. A. Aydiner, and S. Chen, "Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 2, 339-346, 2001.
doi:10.1109/36.905242
12. Zhang, W., "Two-dimensional microwave tomographic algorithm for radar imaging through multilayered media," Progress In Electromagnetics Research, Vol. 144, 261-270, 2014.
doi:10.2528/PIER13090305
13. Potter, L. C., E. Ertin, J. T. Parker, and M. Cetin, "Sparsity and compressed sensing in radar imaging," Proc. IEEE, Vol. 98, No. 6, 1006-1020, 2010.
doi:10.1109/JPROC.2009.2037526
14. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley, 1985.
15. Rajan, S. D. and G. V. Frisk, "A comparison between the Born and Rytov approximations for the inverse backscattering," Geophy., Vol. 54, 864-871, 1989.
doi:10.1190/1.1442715
16. Zhang, Z. Q. and Q. H. Liu, "Two nonlinear inverse methods for electromagnetic induction measurements," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 6, 1331-1339, 2001.
doi:10.1109/36.927456
17. Estatico, C., G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, "A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data," Inverse Problems, Vol. 21, No. 6, S81, 2005.
doi:10.1088/0266-5611/21/6/S07
18. Wang, Y. M. and W. C. Chew, "An iterative solution of the two-dimensional electromagnetic inverse scattering problem," Int. J. of Imaging Syst. Technol., Vol. 1, 100-108, 1989.
doi:10.1002/ima.1850010111
19. Desmal, A. and H. Bagci, "Shrinkage-thresholding enhanced Born iterative method for solving 2D inverse electromagnetic scattering problem," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3878-3884, 2014.
doi:10.1109/TAP.2014.2321144
20. Bagci, H., R. Raich, A. E. Hero, and E. Michielssen, "Sparsity-regularized Born iterations for electromagnetic inverse scattering," Proc. IEEE Int. Symp. Antennas and Propagation, 1-4, 2008.
21. Desmal, A. and H. Bagci, "A preconditioned inexact Newton method for nonlinear sparse electromagnetic imaging," IEEE Geosci. Remote Sens. Lett., Vol. 12, No. 3, 532-536, 2015.
doi:10.1109/LGRS.2014.2349935
22. Bozza, G. and M. Pastorino, "An inexact Newton-based approach to microwave imaging within the contrast source formulation," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1122-1132, 2009.
doi:10.1109/TAP.2009.2015820
23. Estatico, C., M. Pastorino, and A. Randazzo, "A novel microwave imaging approach based on regularization in Banach spaces," IEEE Trans. Antennas Propag., Vol. 60, No. 7, 3373-3381, 2012.
doi:10.1109/TAP.2012.2196925
24. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Trans. Med. Imag., Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334
25. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 203-215, 1997.
doi:10.1109/8.560338
26. Abubakar, A., T. M. Habashy, and P. M. Van den Berg, "Nonlinear inversion of multi-frequency microwave fresnel data using the multiplicative regularized contrast source inversion," Progress In Electromagnetics Research, Vol. 62, 193-201, 2006.
doi:10.2528/PIER06042205
27. Zakaria, A., I. Jeffrey, and J. LoVetri, "Full-vectorial parallel finite-element contrast source inversion method," Progress In Electromagnetics Research, Vol. 142, 463-483, 2013.
doi:10.2528/PIER13080706
28. Ping, X. W. and T. J. Cui, "The factorized sparse approximate inverse preconditioned conjugate gradient algorithm for finite element analysis of scattering problems," Progress In Electromagnetics Research, Vol. 98, 15-31, 2009.
doi:10.2528/PIER09071703
29. Abubakar, P. M., "Contrast source inversion method: State of art," Progress In Electromagnetics Research, Vol. 34, 189-218, 2001.
30. Li, Y. and W. Yang, "Image reconstruction by nonlinear Landweber iteration for complicated distributions," Meas. Sci. Technol., Vol. 19, No. 9, 094014, 2008.
doi:10.1088/0957-0233/19/9/094014
31. Hettlich, F., "The Landweber iteration applied to inverse conductive scattering problems," Inverse Problems, Vol. 14, No. 4, 931-947, 1998.
doi:10.1088/0266-5611/14/4/011
32. Fornasier, M., Theoretical Foundations and Numerical Methods for Sparse Recovery, Walter de Gruyter, 2010.
doi:10.1515/9783110226157
33. Daubechies, I., M. Defrise, and C. De Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Commun. Pure Appl. Math., Vol. 57, No. 11, 1413-1457, 2004.
doi:10.1002/cpa.20042
34. Wei, S. J., X. L. Zhang, J. Shi, and K. F. Liao, "Sparse array microwave 3-D imaging: Compressed sensing recovery and experimental study," Progress In Electromagnetics Research, Vol. 135, 161-181, 2013.
doi:10.2528/PIER12082305
35. Landweber, L., "An iteration formula for Fredholm integral equations of the first kind," Amer. J. Math, Vol. 73, No. 3, 615-624, 1951.
doi:10.2307/2372313
36. Hanke, M., A. Neubauer, and O. Scherzer, "A convergence analysis of the Landweber iteration for nonlinear ill-posed problems," Numerische Mathematik, Vol. 72, No. 1, 21-37, 1995.
doi:10.1007/s002110050158
37. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, 1998.
38. Blumensath, T. and M. E. Davies, "Iterative hard thresholding for compressed sensing," IEEE Trans. Antennas Propag., Vol. 27, No. 3, 265-274, 2009.
39. Wright, S. J., R. D. Nowak, and M. A. Figueiredo, "Sparse reconstruction by separable approximation," IEEE Trans. Signal Process., Vol. 57, No. 7, 2479-2493, 2009.
doi:10.1109/TSP.2009.2016892
40. Kaltenbacher, B., A. Neubauer, and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-posed Problems, Walter de Gruyter, 2008.
doi:10.1515/9783110208276
41. Geffrin, J. M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Problems, Vol. 21, No. 6, S117-S130, 2005.
doi:10.1088/0266-5611/21/6/S09
42. Bloemenkamp, R. F., A. Abubakar, and P. M. van den Berg, "Inversion of experimental multi-frequency data using the contrast source inversion method," Inverse Problems, Vol. 17, No. 6, 1611-1622, 2001.
doi:10.1088/0266-5611/17/6/305