Vol. 55
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-08-19
Three-Step Molding Softlithographic Process for 1×2 Y-Branch POF Coupler
By
Progress In Electromagnetics Research Letters, Vol. 55, 53-60, 2015
Abstract
A three-step molding softlithographic process has been developed for the construction of a sharp Y-junction structure formation in a 1x2 Y-branch plastic optical fiber (POF) coupler design. The 1x2 Y-branch POF coupler is based on a Y-junction splitter which requires that the splitting part is constructed with sharp infinitesimal junction. The softlithographic process enables a PDMS mold to be constructed which then allows mass replication of the polymer-based POF coupler. A standard master mold based on PMMA material is fabricated using CNC milling. A secondary or auxiliary-mold process step is then introduced in order to produce a sharp Y-junction structure which is then transferred to the final PDMS stamp prior to device replication. This step utilizes a free flowing, low viscosity casting-based resin, which after curing and hardening provide the auxiliary mold for PDMS mold fabrication. The result shows that a very fine and sharp Y-junction structure can be produced easily which cannot be produced via standard two step molding softlithographic process. Models for the Y-branch POF coupler produced with and without an auxiliary mold process are constructed which show that a 16% increased in optical performance with the device replicated with the auxiliary mold process.
Citation
Mohd Shafiq Mat Ghazali, and Abang Annuar Ehsan, "Three-Step Molding Softlithographic Process for 1×2 Y-Branch POF Coupler," Progress In Electromagnetics Research Letters, Vol. 55, 53-60, 2015.
doi:10.2528/PIERL15052801
References

1. Loch, M., "Plastic optical fibers: Properties and practical applications," Optical Transmission Systems and Equipment for WDM Networking III, Proceedings of SPIE, Vol. 5596, 299-308, 2004.
doi:10.1117/12.580451

2. Kawase, L. R., Polymer Optical Fibers, American Scientific Publisher, 2004.

3. Ziemann, O., J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission System, 2nd Ed., Springer-Verlag, 2008.

4. Takezawa, Y., S. Akasaka, S. Ohara, T. Ishibashi, H. Asano, and N. Taketani, "Low excess losses in a Y-branching plastic optical waveguide formed through injection molding," Applied Optics, Vol. 33, No. 12, 2307-2312, 1994.
doi:10.1364/AO.33.002307

5. Mizuno, H., O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, "Compact Y-branch-type polymeric optical waveguide devices with large-core connectable to plastic optical fibers," Japanese Journal of Applied Physics, Vol. 44, No. 2, 8504-8506, 2005.
doi:10.1143/JJAP.44.8504

6. Klotzbuecher, T., T. Braune, D. Dadic, M. Sprzagala, and A. Koch, "Fabrication of optical 1 × 2 POF couplers using the laser-LIGA technique," Laser Micromachining for Optoelectronic Device Fabrication, Proc. SPIE, Vol. 4941, 121-132, 2003.
doi:10.1117/12.470165

7. Ehsan, A. A., S. Shaari, and M. K. Abd-Rahman, "Plastic optical fiber coupler with high index contrast waveguide taper," Progress In Electromagnetics Research C, Vol. 20, 125-138, 2011.
doi:10.2528/PIERC11011302

8. Beltrami, D., Planar multimode waveguides and devices, PhD Thesis, Australian National University, Canberra, Australia, 1997.

9. Ehsan, A. A., S. Shaari, and M. K. Abd Rahman, "Machining of acrylic-based Y-branch plastic optical fiber coupler with suspended waveguide taper," Optical Review, Vol. 19, No. 1, 7-12, 2012.
doi:10.1007/s10043-012-0007-9

10. Suzuki, S., T. Kitoh, Y. Inoue, Y. Yamada, Y. Hibino, K. Moriwaki, and M. Yanagisawa, "Integrated optic Y-branching waveguides with an asymmetric branching ratio," Electronics Letters, Vol. 32, No. 8, 735-736, 1996.
doi:10.1049/el:19960503

11. Kim, P., K. Kwon, M. C. Park, S. H. Lee, S. M. Kim, and K. Y. Suh, "Softlithography for microfluidics: A review," BioChip Journal, Vol. 2, No. 1, 1-11, 2008.