Vol. 43
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-07-08
Improvement of Computational Performance of Implicit Finite Difference Time Domain Method
By
Progress In Electromagnetics Research M, Vol. 43, 1-8, 2015
Abstract
Different solution techniques, computational aspects and the ways to improve the performance of 3D frequency dependent Crank Nicolson finite difference time domain (FD-CN-FDTD) method are extensively studied here. FD-CN-FDTD is an implicit unconditionally stable method allowing time discretization beyond the Courant-Friedrichs-Lewy (CFL) limit. For the solution of the method both direct and iterative solver approaches have been studied in detail in terms of computational time, memory requirements and the number of iteration requirements for convergence with different CFL numbers (CFLN). It is found that at higher CFLN more iterations are required to converge resulting in increased number of matrix-vector multiplications. Since matrix-vector multiplications account for the most significant part of the computations their efficient implementation has been studied in order to improve the overall efficiency. Also the scheme has been parallelized in shared memory architecture using OpenMP and the resulted improvement of performance at different CFLN is presented. It is found that better speed-up due to parallelization always comes at higher CFLN implying that the use of FD-CN-FDTD method is more appropriate while parallelized.
Citation
Hasan Khaled Rouf, "Improvement of Computational Performance of Implicit Finite Difference Time Domain Method," Progress In Electromagnetics Research M, Vol. 43, 1-8, 2015.
doi:10.2528/PIERM15052402
References

1. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, 2005.

2. Yang, Y., R. Chen, and E. Yung, "The unconditionally stable Crank Nicolson FDTD method for three-dimensional Maxwell’s equations," Microwave and Optical Technology Letters, Vol. 48, 1619-1622, 2006.
doi:10.1002/mop.21684

3. Rouf, H. K., F. Costen, and S. G. Garcia, "3-D Crank-Nicolson finite difference time domain method for dispersive media," Electronics Letters, Vol. 45, No. 19, 961-962, 2009.
doi:10.1049/el.2009.1940

4. Rouf, H. K., F. Costen, S. G. Garcia, and S. Fujino, "On the solution of 3-D frequency dependent Crank-Nicolson FDTD scheme," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2163-2175, 2009.
doi:10.1163/156939309790109261

5. Joseph, R., S. Hagness, and A. Taflove, "Direct time integration of Maxwell’s equations in line dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses," Optics Letters, Vol. 16, No. 18, 1412-1414, 1991.
doi:10.1364/OL.16.001412

6. Crank, J. and P. Nicolson, "A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type," Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 43, 50-67, 1947.
doi:10.1017/S0305004100023197

7. Barrett, R., M. Berry, et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM Press, 1993.

8. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual method for solving nonsymmetric linear systems," SIAM Journal on Scientific and Statistical Computing, Vol. 7, 856-869, 1986.
doi:10.1137/0907058

9. Van der Vorst, H., "BiCGSTAB: A fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems," SIAM Journal on Scientific and Statistical Computing, Vol. 13, 631-644, 1992.
doi:10.1137/0913035

10. Yang, Y., R. Chen, et al. "Application of iterative solvers in 3D Crank-Nicolson FDTD method for simulating resonant frequencies of the dielectric cavity," Asia-Pacific Microwave Conference, 1-4, 2007.

11. Numerical Analysis Group, Rutherford Appleton Laboratory Harwell Subroutine Library, (HSL), 2007 for Researchers, http://www.hsl.rl.ac.uk/hsl2007/hsl20074researchers.html.

12. Saad, Y., "SPARSKIT: A basic toolkit for sparse matrix computations (Version 2),", Research Institute for Advanced Computer Science, NASA Ames Research Center, 1994, http://www-users.cs.umn.edu/ saad/software/SPARSKIT/sparskit.html.

13. Rouf, H. K., "Unconditionally stable finite difference time domain methods for frequency dependent media,", Ph.D. Thesis, The University of Manchester, UK, 2010.

14. Rouf, H. K., F. Costen, and M. Fujii, "Modelling EM wave interactions with human body in frequency dependent Crank Nicolson method," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2429-2441, 2011.
doi:10.1163/156939311798806185

15. Chandra, R., R. Menon, et al. Parallel Programming in OpenMP, Morgan Kaufmann, 2001.