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Improvement of Computational Performance of Implicit Finite
Difference Time Domain Method

Hasan K. Rouf*

Abstract—Different solution techniques, computational aspects and the ways to improve the
performance of 3D frequency dependent Crank Nicolson finite difference time domain (FD-CN-FDTD)
method are extensively studied here. FD-CN-FDTD is an implicit unconditionally stable method
allowing time discretization beyond the Courant-Friedrichs-Lewy (CFL) limit. For the solution of the
method both direct and iterative solver approaches have been studied in detail in terms of computational
time, memory requirements and the number of iteration requirements for convergence with different CFL
numbers (CFLN ). It is found that at higher CFLN more iterations are required to converge resulting
in increased number of matrix-vector multiplications. Since matrix-vector multiplications account for
the most significant part of the computations their efficient implementation has been studied in order
to improve the overall efficiency. Also the scheme has been parallelized in shared memory architecture
using OpenMP and the resulted improvement of performance at different CFLN is presented. It is
found that better speed-up due to parallelization always comes at higher CFLN implying that the use
of FD-CN-FDTD method is more appropriate while parallelized.

1. INTRODUCTION

In the finite difference time domain (FDTD) method, the size of time discretization is limited by the
smallest spatial step due to the CFL stability condition [1]. To overcome this drawback of explicit FDTD
method recently researchers have focused on developing alternative unconditionally stable schemes which
can overcome the upper bound on the time discretization and thereby reduce the total simulation time.
Crank Nicolson FDTD (CN–FDTD) [2] is an unconditionally stable method and in this work we deal
with the frequency dependent version of it (FD-CN-FDTD method) [3, 4]. Since Crank Nicolson based
schemes require the solution of computationally expensive large sparse matrices, extensive studies on
different computational aspects are essential to make them a promising affordable alternative to the
explicit FDTD method.

In this paper we studied different computational aspects of 3D frequency dependent CN–FDTD
(FD-CN-FDTD) method [3]. For the solution of the method both direct and iterative solver approaches
have been studied in detail in terms of computational time and memory requirements. Furthermore, two
best-known iterative methods, Bi-Conjugate Gradient Stabilised (BiCGStab) and Generalised Minimal
Residual (GMRES), were compared in terms of the number of iteration requirements for convergence
with different CFLN , CPU-time and memory requirements. Here CFLN ≡ Δt/ΔtCFL with Δt being
the time discretization used in the simulation and ΔtCFL denoting the maximum time discretization
allowed by the CFL stability condition. As in each time step of the FD-CN-FDTD method, matrix-
vector multiplication needs to be performed a number of times, it has a significant contribution in
the overall computational performance. This is because matrix-vector multiplications are performed
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repeatedly until the solution converges. Also it is found that more iterations are required to converge
at higher CFLN resulting in increased number of matrix-vector multiplications. Therefore, efficient
implementation of matrix-vector multiplications have been studied. We also performed parallelization
by using OpenMP in a shared memory architecture and studied the resulted speed-up of performance
at different CFLN . The resulted operations from the increased number of iteration to converge at
higher CFLN are more suitable for parallelization. Therefore, better speed-up by parallelization is
seen at higher CFLN which indicates that the use of FD-CN-FDTD method is more appropriate while
parallelized.

The paper is organized as follows: Section 2 briefly describes the FD-CN-FDTD method.
Performance of Gaussian elimination based direct methods is presented in Section 3 while Section 4
presents that of iterative methods. How the computational efficiency of FD-CN-FDTD method can be
further improved is discussed in Section 5.

2. FREQUENCY DEPENDENT CN-FDTD METHOD

In FD-CN-FDTD scheme [3] frequency dependence of single-pole Debye media has been incorporated by
auxiliary differential equation method [5]. In material independent form, Maxwell’s curl equations are:

∇× E = −∂B
∂t

and ∇× H =
∂D
∂t

, where E, H, D and B are the electric field, magnetic field, electric
flux density and magnetic flux density, respectively. In frequency domain, the constitutive relationships
for isotropic, linear, non-magnetic, single-pole Debye electrically-dispersive media are: B = μ0H and

D = ε0(ε∞ +
εS − ε∞
1 + jωτD

− j
σ

ωε0
)E, where ε0 and μ0 are the free-space permittivity and permeability, and

εS is the static permittivity, ε∞ the optical permittivity, τD the relaxation time, σ the static conductivity
and ω the angular frequency. The previous equation can be re-written as

(jω)2τDD + jωD = (jω)2ε0ε∞τDE + jω(ε0εS + στD)E + σE (1)

Mapping frequency domain (jω)m into time domain ∂m

∂tm Eq. (1) can be written as a differential equation
in time domain:

τD
∂2D
∂t2

+
∂D
∂t

= ε0ε∞τD
∂2E
∂t2

+ (ε0εS + στD)
∂E
∂t

+ σE (2)

Crank-Nicolson method [6] is applied to Maxwell’s curl equations, the constitutive relationships
and Eq. (2). Algebraic manipulation of the resultant equations yields an equation with only electric
field En+1 terms:
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Here ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 are space dependent and functions of the Debye parameters and time
discretization Δt as defined in [3]. Cyclic permutation of x, y and z in Eq. (3) yields the remaining
two E-field equations. By applying them to each grid position in the computational space a system of
linear equations of Au = c is set up. A is very large and highly sparse coefficient matrix, u represents a
vector with the electric field components to be solved, and c is the excitation vector. When the problem
space is homogeneous, A is symmetric and otherwise asymmetric. The system of equations Au = c is
solved to find the E field. Then D and H fields are calculated in an explicit manner from the E field.

3. SOLUTION BY DIRECT METHODS

Sparse matrix system Au = c is solved by either direct or iterative methods. Flowchart of the FD-
CN-FDTD method in both approaches is shown in Figure 1. At each time step of the FD-CN-FDTD
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Figure 1. Flowchart of the FD-CN-FDTD
method.

Figure 2. Observations from explicit FDTD and
FD-CN-FDTD schemes.

algorithm, a new vector c is calculated for the right hand side, while A is fixed. Direct solvers factorizes
A (which dominates the computational time) only once before the beginning of the FDTD iteration.
Once factorized, the same factors are repeatedly used at each time step to obtain u. For this reason,
this method showed the potential to become more computationally efficient than the iterative methods
when a large number of FDTD iterations are needed, since at each time step only forward and backward
solutions are required.

Numerical tests were performed with the direct solver using sparse Gaussian elimination in the
FD-CN-FDTD method. A cubic computational region of size (30 × 30 × 30) cells was considered. Half
of it was filled with medium 1 (εS = 71.66, ε∞ = 34.58, σ = 0.49 S/m and τD = 5.65 ps) and the other
half with medium 2 (εS = 87.34, ε∞ = 49.13, σ = 0.69 S/m and τD = 26.89 ps). A z-directed dipole was
placed at (10, 15, 15) in medium 1, with a time evolution of a modulated Gaussian pulse centered at
3GHz. Signals were recorded 10 cells away at (20, 15, 15) in medium 2. A uniform spatial sampling was
taken (Δx = Δy = Δz = 10−3 m). The first 600 time steps of the Ez field component at the observation
point are shown in Figure 2 computed both with standard explicit frequency dependent (FD-)FDTD
with CFLN = 1, and with FD-CN-FDTD with CFLN = 1, 3, 5. Good agreement between the signals
from the unconditionally stable FD-CN-FDTD method beyond the CFL limit (CFLN > 1) and explicit
FD-FDTD was observed. For this numerical problem, CPU time required for LU decomposition was
633 minutes and average CPU time per iteration was 6.489 seconds when CFLN = 1 on dual AMD
Opteron 280 with 8GB of memory. When the FDTD space was filled with homogeneous material of
media 1 or when CFLN > 1 there were no significant differences in these values.

Although direct solvers are robust and reliable, they are computationally more expensive than
iterative solvers, unless parallelized, and require excessively large memory. For example, a 303 cells
computational space (like the one described in the previous numerical test) solved by the direct solver
in double precision using sparse Gaussian elimination requires 2.4 GB of memory whereas iterative
solvers like BiCGStab and GMRES require only 62 MB and 65 MB, respectively. Thus for practical
problems iterative solvers should be used.

4. SOLUTION BY ITERATIVE METHODS

In the iterative solver approach, an initial estimation of the solution is made, and by repeated use of
a certain algorithm (depending on the iterative method used) this initial estimation approaches the
desired solution. Although there exist many iterative methods, a certain method may work well for one
problem but not for another. To choose an effective iterative method from the best known methods for
which extensive computational experience has been gathered, the flowchart of Figure 3 can be used [7].
In this work, GMRES(m) that restarts every m iterations [8] and BiCGStab of [9] were used.
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Figure 3. Choosing an effective iterative method.
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Figure 6. Average number of iterations required
for different CFLN with residual error = 10−13.

We compare the performances of BiCGStab and GMRES for two cases. The first one consists of an
inhomogeneous medium, in a cubic space of size 803 cells, with 5 different media as shown in Figure 4.
The second one involves the same cubic space of the previous case, now filled with a homogeneous
medium with Debye parameters εS = 6.2, ε∞ = 3.5, σ = 0.029 S/m and τD = 39.0 ps. In both cases
a z-directed dipole hard source with a time variation given by a Gaussian pulse centered at 6.9 GHz,
with 4.94 GHz bandwidth (−3 dB decay) was placed at the centre of the computational space. Spatial
sampling was uniform: Δx = Δy = Δz = Δ = 10−3 m. The time step is taken equal or above
the CFL stability condition of the explicit FDTD. The level of accuracy in waveform compared with
explicit frequency-dependent FDTD is the same as the one presented in Figure 2. Figure 5 shows the
convergence pattern for CFLN = 20, plotting the residual error as a function of the average number
of iterations required to achieve a specified accuracy. For example, to make the residual error lower
than 10−8 BiCGStab requires about 45 iterations whereas GMRES requires about 97 iterations in both
homogeneous and inhomogeneous cases. The convergence rate of the solvers is weakly affected by
homogeneity. For a modest value of CFLN iteration numbers would certainly be lowered than those
showed in Figure 5 (CFLN = 20).
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Figure 6 shows how the average number of iterations, required by BiCGStab and GMRES to
converge, increases with the CFL number. Stopping criteria in this case was 10−13 and the reason for
selecting this small value of convergence tolerance is, in FD-CN-FDTD, unlike frequency-independent
CN-FDTD, D = εE is used and therefore D can have a value of such small order because of ε
(permitivitty). GMRES stagnates when convergence tolerance is below 10−13 while BiCGStab can work
even at a lower convergence tolerance. Both solvers require more iterations to converge as CFLN goes
up but the rate of increase of iteration numbers with CFLN is higher for GMRES than for BiCGStab.
Homogeneity does not affect significantly this rate, particularly, for BiCGStab. The change of iteration
number with CFLN for convergence tolerance values from 10−12 to 10−3 can be assumed from Figure 5.
In FD-CN-FDTD, the total number of iterations required to complete the simulation decreases with
CFLN , but the increase of computational costs per iteration with CFLN , as shown in Figure 6, can
undermine this positive effect unless the solution is very efficient. Figure 7 plots the CPU time required
by BiCGStab and GMRES as a function of CFLN . The case of stopping criterion of 10−13 was employed
and simulated to reach a fixed time instant by letting the code run for 1200/CFLN time steps on a dual
AMD Opteron 280 with 8 GB of memory. Observe that the CPU-time decreases with CFLN , for both
solvers, although GMRES requires more CPU time than BiCGStab. It should be noted that for a much
smaller problem (of size 303 cells), as mentioned in Section 3, the direct solver requires 633 minutes
for LU decomposition. Therefore, BiCGStab and GMRES are far more efficient than the direct solver.
Table 1 presents the memory required by the two solvers for three different computational space sizes.
GMRES always requires more memory than BiCGStab.

From all the above, we can conclude that BiCGStab outperforms GMRES in computational
efficiency. This finding is in contrary to that of [10] which reports that GMRES is the fastest for
the frequency-independent CN-FDTD scheme presented there. The work of [10] is based on Maxwell’s
curl equations in material-independent form while FD-CN-FDTD additionally involves Eq. (2) which
has 2nd order time derivative terms. The FD-CN-FDTD involves nine field components in place of six
for CN-FDTD, and the sparsity pattern of the former has more bands than the latter. Apart from
this, the concerned problem of simulation, implementation, optimization and parameters tuning have
an obvious influence in concluding which solver is the most efficient.

Table 1. Memory required by BiCGStab and GMRES for different computational spaces.

Computational
Size (cells)

403 603 803

BiCGStab 145 MB 487 MB 1.1 GB
GMRES 151 MB 507 MB 1.2 GB
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Figure 7. CPU time required by BiCGStab and
GMRES for different CFLN .
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5. IMPROVEMENT OF COMPUTATIONAL EFFICIENCY

Repetitive matrix-vector multiplications are required in each simulation step before getting the solution
and such multiplications account for the most significant portion of the computations during the solution
by iterative methods. Therefore, we need to opt for an efficient matrix-vector multiplication technique in
order to improve the overall efficiency. To solve the sparse system, Au = c we used Harwell Subroutine
Library (HSL) packages [11] which use their own routine mc-65 for matrix-vector multiplications. For
efficient implementation we further studied other sparse matrix-vector multiplication subroutines, for
example, amux from SPARSEKIT [12] and observed improved performance. For the numerical tests
described in Section 4 (Figure 4), when the simulation is run for 1200 time steps with CFLN = 1 using
Intel Fortran Compiler on AMD Athlon 64 X2 4200+ Dual Core Processor, the performance of matrix-
vector multiplication subroutines, mc-65 and amux are shown in Table 2. In Table 2, the performance is
shown in terms of the percentage of total CPU time used by a particular subroutine and total CPU time
required by the whole FD-CN-FDTD code. amux accounted for 42.4% of the total time spent to run
the code in comparison to 47.8% for mc-65. Depending on the choice of matrix-vector multiplication
subroutine, the percentage of time used by the BiCGStab solver subroutine, mi26ad, is also affected.
The most noticeable observation in Table 2 is the reduction of total CPU time when amux is used instead
of mc-65. amux further simplifies the implementation as it can do the matrix-vector multiplication when
the sparse matrix is stored in usual compressed sparse row (CSR) format, while mc-65 further requires
the matrix in HSL’s own format (HSL_ZD11).

Figure 6 shows that in solving the sparse matrix system, more iterations are required to converge
at higher CFLN . This means that the number of matrix-vector multiplications would increase at higher
CFLN . For the same numerical test mentioned above, the performance of amux and mi26ad subroutines
at different CFLN is shown in Table 3. These two are the most computationally expensive subroutines
used in the implementation of the FD-CN-FDTD method. Table 3 shows that with the increase of
CFLN , the percentage of total CPU time used by both of the subroutines increases. Since these routines
consume much of the CPU time, while doing parallelization (in the next paragraph) they should be
adeptly taken care of. As preconditioners are usually used by matrix-vector multiplication, this study
is also relevant if a suitable preconditioner is used during the solution.

By doing parallelization, the requirements of large memory and long CPU time by the FD-CN-
FDTD method can be tackled efficiently. We performed parallelization using OpenMP in a shared

Table 2. Performance with matrix-vector multiplication subroutines mc-65 and amux (CFLN = 1).

Subroutine
% of total CPU
time used by

the subroutine
Total CPU time

mc-65 47.8 84 min 31 sec
mi26ad 18.5
amux 42.4 70 min 49 sec
mi26ad 25.3

Table 3. Performance of the two most computationally expensive subroutines at different CFLN .

CFLN
% of total CPU time
amux mi26ad

1 42.4 25.3
2 44.4 28.1
3 48.7 30.7
4 51.8 31.3
5 56.4 32.5
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Table 4. Speed-up by the OpenMP code on 32 cores at different CFLN .

CFLN = 1
Code type CPU time Speed-up

Serial 39 hr 53 min 1
OpenMP 15 hr 11 min 2.63

CFLN = 3
Code type CPU time Speed-up

Serial 37 hr 38 min 1
OpenMP 6 hr 26 min 5.85

CFLN = 5
Code type CPU time Speed-up

Serial 34 hr 32 min 1
OpenMP 4hr 3min 8.53

memory architecture. In the parallel execution of the code, OpenMP uses the fork-join model as shown
in Figure 8. An OpenMP programme begins as a single thread of execution. When it encounters a
parallel construct, it creates (‘forks’) the required number of threads and becomes the master thread of
all the threads. Programme statements within the parallel construct are executed in parallel by each
thread of the team of threads. At the end of the parallel construct, threads synchronize back (‘join’)
and only the master thread continues the execution. There can be any number of parallel regions and
different number of threads in each parallel region, as shown in Figure 8.

Numerical modelling of the human body in the FD-CN-FDTD method, as described in [13, 14], was
implemented in OpenMP for the cases of CFLN = 1, 3 and 5. The geometrical features of the human
body were read from a 2-mm resolution male voxel model and for each voxel (representing a certain
tissue) the corresponding single–pole Debye parameters were mapped. As the section above the upper
chest was modelled, the size of the FD-CN-FDTD computational space was 320×160×220 voxels from
the top of the head. The source excitation was z-directed modulated Gaussian pulse centred at 3 GHz.
Table 4 shows the achieved improvement by the OpenMP parallelization over the serial code when it
was run for 1050/CFLN time steps. With the OpenMP code, the CPU time has been greatly reduced
when CFLN = 1 and as expected, the most significant reduction in CPU time has been achieved when
CFLN is higher. However, the scaling is not perfect for the number of threads (32) the code uses
because in OpenMP, usually, it is hard to obtain perfect speed-ups even when the parallelization is done
correctly [15]. Understanding the details of underlaying hardware and using vendor-supplied parallel
mathematical operation libraries may improve the performance to some extent.

An interesting observation in Table 4 is the increase of speed-up by OpenMP parallelization at
higher CFLN . From the speed-up by OpenMP for CFLN = 1, 3 and 5 are 2.63, 5.85 and 8.53,
respectively, it is found that better speed-up always comes at higher CFLN , indicating that the use of
the FD-CN-FDTD method is more appropriate while parallelized. This may be resulted from the fact
that the operations involved in the increased iteration numbers to converge at higher CFLN , as shown
in Figure 6, are possibly more suitable for parallelization.

6. CONCLUSION

Different solution techniques and computational aspects of three-dimensional unconditionally stable FD-
CN-FDTD method have been studied in this paper. For the solution, both direct and iterative solver
approaches have been studied in detail in terms of computational time and memory requirements. Direct
methods have the potential to become more computationally efficient if the problem size is very small
and a large number of FDTD iterations are needed. Because after factorization of the coefficient matrix
at the beginning at each time step only forward and backward solutions are required. However, they
can not be used for large practical problems since they are computationally more expensive and require
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excessively large memory. Therefore, two best-known iterative methods, GMRES and BiCGStab, were
studied in terms of the number of iteration requirements for convergence with different CFLN , CPU-
time and memory requirements. As in each time step of the FD-CN-FDTD method, matrix-vector
multiplications need to be done repeatedly until the solution converges, it has a significant contribution
in the overall computational performance. Also it is found that more iterations are required to converge
at higher CFLN which results in increased number of matrix-vector multiplications. Therefore, efficient
implementation of matrix-vector multiplications has been studied in order to improve the overall
efficiency. FD-CN-FDTD code was parallelized by using OpenMP in shared memory architecture and
it was found that better speed-up always comes at higher CFLN indicating that the use of the FD-CN-
FDTD method is more appropriate while parallelized.
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