Vol. 153
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-10-12
FEM Method for the EEG Forward Problem and Improvement Based on Modification of the Saint Venant's Method
By
Progress In Electromagnetics Research, Vol. 153, 11-22, 2015
Abstract
The finite-element method (FEM) is applied to solve the EEG forward problem. Two issues related to the implementation of this method are investigated. The first is the singularity due to the punctual dipole sources and the second is the numerical errors observed near the interface of different tissues. To deal with the singularity of the punctual dipole sources, three source modeling methods, namely, the direct, the subtraction and the Saint Venant's methods, are examined. To solve the problem of numerical instability near the interface of different tissues, a modification on the Saint Venant's method is introduced. The numerical results are compared with analytical solution in the case of the multilayer spherical head models. The advantages of the proposed method are highlighted.
Citation
Takfarinas Medani, David Lautru, Denis Schwartz, Zhuoxiang Ren, and Gerard Sou, "FEM Method for the EEG Forward Problem and Improvement Based on Modification of the Saint Venant's Method," Progress In Electromagnetics Research, Vol. 153, 11-22, 2015.
doi:10.2528/PIER15050102
References

1. Grech, R., T. Cassar, J. Muscat, et al. "Review on solving the inverse problem in EEG source analysis," Jnl. of Neuroengineering and Rehabilitation, Vol. 5, No. 1, 25, 2008.
doi:10.1186/1743-0003-5-25

2. Hämäläinen, M., R. Hari, R. J. Ilmoniemi, et al. "Magnetoencephalography - Theory, instrumentation, and applications to noninvasive studies of the working human brain," Reviews of Modern Physics, Vol. 65, No. 2, 413, 1993.
doi:10.1103/RevModPhys.65.413

3. Tadel, F., S. Baillet, J. C. Mosher, et al. "Brainstorm: A user-friendly application for MEG/EEG analysis," Comput. Intelligence and Neuroscience, Vol. 2011, 8, 2011.

4. Hallez, H., B. Vanrumste, R. Grech, et al. "Review on solving the forward problem in EEG analysis," Jnl. of Neuroengineering and Rehabilitation, Vol. 4, No. 1, 46, 2007.
doi:10.1186/1743-0003-4-46

5. Wolters, C. H., H. Köstler, C. Möller, et al. "Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models," SIAM Journal on Scientific Computing, Vol. 30, No. 1, 24-45, 2007.
doi:10.1137/060659053

6. Bertrand, O., M. Thevenet, and F. Perrin, "3D finite element method in brain electrical activity studies," Biomagnetic Localization and 3D Modelling, 154-171, 1991.

7. Shahid, S. and P. Wen, "Analytic and numeric evaluation of EEG forward problem using spherical volume conductor models," 2010 IEEE/ICME International Conference on IEEE Complex Medical Engineering (CME), 28-33, 2010.
doi:10.1109/ICCME.2010.5558878

8. Wolters, C. H., A. Anwander, X. Tricoche, et al. "Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling," NeuroImage, Vol. 30, No. 3, 813-826, 2006.
doi:10.1016/j.neuroimage.2005.10.014

9. Zhang, Y., Z. Ren, and D. Lautru, "Finite element modeling of current dipoles using direct and subtraction methods for EEG forward problem," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 33, No. 1/2, 210, 2014.

10. Medani, T., D. Lautru, and Z. Ren, "Study of modeling of current dipoles in the finite element method for eeg forward problem," La 7ème Conférence Européenne sur les Méthodes Numériques en Electromagnétisme (NUMELEC 2012), Juillet, Marseille, France, 2012.

11. Zhang, Z., "A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres," Physics in Medicine and Biology, Vol. 40, No. 3, 335, 1995.
doi:10.1088/0031-9155/40/3/001

12. Buchner, H., Gr. Knoll, M. Fuchs, et al. "Inverse localization of electric dipole current sources in finite element models of the human head," Electroencephalography and Clinical Neurophysiology, Vol. 102, No. 4, 267-278, 1997.
doi:10.1016/S0013-4694(96)95698-9

13. Yan, Y., P. Nunez, and R. T. Hart, "Finite-element model of the human head: Scalp potentials due to dipole sources," Medical and Biological Engineering and Computing, Vol. 29, No. 5, 475-481, 1991.
doi:10.1007/BF02442317

14. Lew, S., C. H.Wolters, T. Dierkes, et al. "Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis," Applied Numerical Mathematics, Vol. 59, No. 8, 1970-1988, 2009.
doi:10.1016/j.apnum.2009.02.006

15. Drechsler, F., C. H. Wolters, T. Dierkes, et al. "A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation," NeuroImage, Vol. 46, No. 4, 1055-1065, 2009.
doi:10.1016/j.neuroimage.2009.02.024

16. Vorwerk, J., M. Clerc, M. Burger, and C. H. Wolters, "Comparison of boundary element and finite element approaches to the EEG forward problem," Biomedical Engineering, Vol. 57(Suppl. 1), 795-798, 2012.

17. Vorwerk, J., J.-H. Cho, S. Rampp, H. Hamer, T. R. Knosche, and C. H. Wolters, "A guideline for head volume conductor modeling in EEG and MEG," NeuroImage, Vol. 100, 590-607, 2014.
doi:10.1016/j.neuroimage.2014.06.040

18. Fang, Q. and D. Boas, "Tetrahedral mesh generation from volumetric binary and gray-scale images," Proceedings of IEEE International Symposium on Biomedical Imaging 2009, 1142-1145, 2009.

19. Liu, A. and B. Joe, "Relationship between tetrahedron shape measures," BIT Numerical Mathematics, Vol. 34, No. 2, 268-287, 1994.
doi:10.1007/BF01955874

20. Medani, T., D. Lautru, Z. Ren, D. Schwartz, and G. Sou, "Modelling of brain sources using the modified Saint Venant’s method in FEM resolution of EEG forward problem," 7th Annual International IEEE EMBS Conference on Neural Engineering, France, Apr. 2015.

21. Gramfort, A., T. Papadopoulo, E. Olivi, and M. Clerc, "OpenMEEG: Opensource software for quasistatic bioelectromagnetics," BioMedical Engin., Vol. 45, No. 9, 2010.