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FEM Method for the EEG Forward Problem and Improvement
Based on Modification of the Saint Venant’s Method
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Abstract—The finite-element method (FEM) is applied to solve the EEG forward problem. Two
issues related to the implementation of this method are investigated. The first is the singularity due
to the punctual dipole sources and the second is the numerical errors observed near the interface of
different tissues. To deal with the singularity of the punctual dipole sources, three source modeling
methods, namely, the direct, the subtraction and the Saint Venant’s methods, are examined. To solve
the problem of numerical instability near the interface of different tissues, a modification on the Saint
Venant’s method is introduced. The numerical results are compared with analytical solution in the case
of the multilayer spherical head models. The advantages of the proposed method are highlighted.

1. INTRODUCTION

Understanding the brain and its functions in vivo is a predominant research field. To this end, many
devices are developed, and among them the electroencephalography (EEG) is a non-invasive functional
imaging technique. The EEG directly measures the electric brain activity on the scalp with high
temporal resolution. Its main purpose is to record the brain activity during a specific task and then
to localize the sources of the recorded signals (neurons populations) inside the brain. This tool is
used both in clinical practice and cognitive research areas in neuroscience [1, 2]. The macroscopic
neuronal activity is assumed to be modeled by electrical current dipole sources [2]. The process of
source localization involves the resolution of an inverse problem which requires several models to solve
the associated forward problem. The forward problem allows the prediction of the potential on the
scalp generated from a given source inside the brain. Its resolution leads to constructing the so called
“lead field matrix” [2, 3], an operator describing the relation between the source parameters, the head
parameters and the predicted signals on the EEG electrodes. The accuracy of the source localization
depends largely on the accuracy of the forward problem’s solution, which is related to the choice of the
head’s model, source’s model and computational method.

Currently, in practice, for the sake of computational simplicity and rapidity, source’s localization
software mostly uses the multilayer spherical head model with an analytical solution, or the boundary
element method (BEM) with a numerical solution to solve the forward problem [1, 3, 4, 16, 21], where
the brain tissues are treated as homogenous and isotropic. The improvement of EEG imaging
accuracy requires more realistic head model that takes into account the whole head with more realistic
properties [5, 6, 8]. For these reasons, methods based on a volume discretization, such as the finite
element method (FEM) or the finite difference method (FDM), have attracted more attention in recent
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years [7–9, 13]. However, with a FEM discretization, the punctual source introduces a numerical
singularity which impacts on both the accuracy and the performance of the FEM forward solution.
The direct method, subtraction method and saint Venant’s method [4, 5, 7, 9, 10, 14, 15, 20] are three
approaches which can be used to improve the behavior of the FEM in this context. In the literatures,
several studies investigate and compare the accuracy of these methods [9, 10, 14–17]. However, the
previous studies observed remaining numerical instability in the case of sources located near the
interfaces of different layers. In this study, these three aforementioned methods are investigated and
applied in the case of multilayer spherical head models where the current dipole sources are placed in
different positions and orientations inside the brain’s layer. To deal with the problem of the numerical
instability near the interfaces of different tissues, a modification on the Venant’s method is introduced
and evaluated. The resulting surface potential is compared with those obtained from an available
analytic solution [11].

2. THE EEG FORWARD PROBLEM

The EEG forward problem is the computation of the electric potential V on the scalp from a given
source inside the brain. This calculation leads to solving the Poisson’s equation, which needs models of
the source (brain activities) and the head.

2.1. Source Model

The primary source of the EEG signals is a large number of active pyramidal neurons, consisting of
around 105 to 107 cells, laying in a small volume (called macro-column) and located in the cortex, i.e.,
the grey matter. The pyramidal neurons are aligned perpendicularly to the cortex’s surface. They are
synchronously activated during a small period of time (about 10 ms) then their individual electrical
contributions can be summed and reach detectable levels. This activity can be modelled by a current
dipole [2]. In bioelectricity [2, 7] the dipole can be represented by a pair of monopoles having equal
magnitude I but opposite polarity, separated by an infinitesimal distance l as expressed in the relation (1)
and shown in Fig. 1. −→

jp = I [δ (�r − �rsource) − δ (�r − �rsink)] (1)

where
−→
jp is the primary current density composed of the monopole source at �rsource position and the

monopole sink at �rsink position, and δ is the Dirac distribution. In electromagnetic, this relation can be
represented by the dipolar moment vector �M , oriented from the sink to the source and applied at the
middle of the segment [�rsink, �rsource] at �r0:

−→
jp = I�lδ (�r − �r0) = �Mδ (�r − �r0) (2)

The associated current density in the conductor
−→
js , also called the volume or secondary current is given

by the Ohm’s law: −→
js = σ �E (3)

where �E denotes the electric field in the volume conductor, and σ is the electric conductivity. The total
current �j in the volume is:

�j =
−→
jp +

−→
js (4)

The bioelectric field’ behaviour in the head can be expressed by Maxwell’s equations. The frequencies of
EEG signals are up to 100 Hz, hence, the propagation and time variation can be ignored [2]. Therefore
the quasi-static approximation is used:

div�j = 0 (5)
�E = −−−→

gradV (6)

These equations lead to the Poisson’s equation:

div
[
σ
−−→
gradV

]
= div

−→
jp = Jp (7)
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Figure 1. Dipole moment’s representation. Figure 2. The multi-layer concentric sphere.

2.2. Head model

EEG source analysis usually uses a spherical model to approximate the human head. It consists of
N layers, representing the different tissues with the radii ri and the conductivity σi, i = 1, . . . , N for
the ith layer, an example is shown in the Fig. 2. The solution of electric potential is evaluated on the
outermost surface SN . This model is used to study the forward and inverse EEG problem in several
studies [1–4]. Although, the spherical model is not accurate because it does not represent the real human
head, however, it plays an important role in the research since it can provide analytical solution [11]
and serve as reference to validate the numerical methods.

In this paper two spherical models of the head are used. The first is built with four concentric
layers, noted as hm1, and the second is represented in three layers and noted as hm2. Starting from the
inside, for the model hm1, the layers represent, respectively, the brain, the cerebro-spinal fluid (csf), the
skull and the scalp. The outside radius of each layer are [63, 65, 71, 75] in mm and the conductivities
are [0.33, 1.0, 0.0042, 0.33] in Sm−1, respectively. For the second model hm2, the layers are the same as
previous one but without the csf’s compartment, the outer radius of each layer are [63, 71, 75] (mm),
respectively.

3. FEM FORMULATION OF THE FORWARD PROBLEM

To apply the FEM, the entire volume Ω representing the head is divided into tetrahedral elements; the
nodal potential V is expressed as:

V (x, y, z) =
n∑

i=1

Viϕi(x, y, z) (8)

where ϕi(x, y, z) denotes a set of test functions also called basis functions, Vi is the scalar potential
associated to the node i, n is the number of vertices (FEM nodes). On the outer surface, the following
Neumann boundary condition is imposed:

σ �gradV · �n = 0 (9)

which means that the normal component of the current density vanishes, �n is the normal vector to the
surface SN .

To derive to the finite element formulation, the Galerkin approach is applied and the ‘weak
formulation’ is obtained: ∫

Ω

−−→
gradϕ · σ−−→gradV dΩ =

∫
Ω

ϕdiv
−→
jpdΩ (10)

Substituting (8) in (10) leads to the following linear matrix system:

KVi = J (11)

where J is the source term obtained by integration of the right hand side (rhs) of Equation (10), and
K is the stiffness matrix.

In the implementation of the FE approach on the EEG forward problem, there are two issues need to
be investigated. The first is the treatment of the singularity caused by the puncture source. The second
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is the important numerical instabilities observed for the sources situated near the interface of different
conductivities [5, 9, 10]. In the following sections, three dipole source modelling methods, namely, the
direct method, subtraction method and Saint Venant’s method, are respectively, described. The Saint
Venant’s method is further investigated to deal with the numerical problems near the interfaces, where
a modification on the monopoles’ distribution, based on the Saint Venant Condition [14, 17, 20], is
introduced and tested.

4. TREATMENT OF THE SOURCE’S SINGULARITY

The numerical singularity of the point source affects the accuracy of the final results. In this section
the direct method, the subtraction method, and the Saint Venant’s method dealing with the singularity
are presented and evaluated.

4.1. Direct Method

This method is well described in [4, 9, 10, 14]. It is formulated by integrating the dipole source with the
element basis functions ϕi. Its formulation is expressed in the following:∫

Ω

−−→
gradϕi · σ−−→gradV dΩ = −

∫
Ω

−→
jp
−−→
gradϕidΩ (12)

The right hand side (rhs) of the Poisson’s equation is defined only on nodes of the element containing
the dipole and set to zero otherwise as shown in Fig. 3. As can be easily observed, the rhs of (12) is
highly impacted by the shape of the element where the source is located.

4.2. Subtraction Method

The idea is to split the total potential V into a singularity potential V ∞ and a correction potentiel
V corr [4, 5, 9, 10].

V = V ∞ + V corr (13)
The potential V ∞ is analytically calculated for a dipole source at position �r0 in a homogenous volume
conductor Ω∞ with constant isotropic conductivity σ∞. From the Equations (7), (9) and (13), these
following relations are obtained:

div
[
σ
−−→
gradV corr

]
= div

[
(σ − σ∞)

−−→
gradV ∞

]
(14)

σ
−−→
gradV corr · �n = −σ

−−→
gradV ∞ · �n (15)

V corr is numerically calculated by solving (14). Finally the total potential V can be calculated using
the relation (13). The right hand side of the Poisson’s equation in this method is defined on all nodes
of elements that have different conductivity than σ∞.

4.3. Saint Venant’s Method

This approach is based on the Saint Venant’s principle [5, 10, 12], which is originally applied in the
elasticity’s theory. It proposes to substitute the dipole by a set of monopoles, placed around the
dipole’s position �r0. The values of these monopoles are determined to approximate as well as possible
the dipole moment �M by the multi-pole moment �T given by this relation:

�T =
∫

Ω
(�rv − �r0) JpdΩ (16)

where �rv denotes the position of the monopoles, and Jp = div
−→
jp is the volume current density (Am−3).

In the case of the FEM, the relation (16) is discretized; and each monopole is placed on a neighbour
FE node. Hence the relation (16) yields to:

�T =
k∑

v=1

(�rv − �r0) j
ven

=
k∑

v=1

�rv0jven
= R̄j

ven
(17)
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where k is the number of monopoles, j
ven

the discrete value of the monopole, �rv0 the vector from the
node v at position �rv to the real dipole position �r0, and R̄ the matrix of distances �rv0. The values j

ven
are determined by the minimisation of the following expression (18) using the Tikhinove regularization:

τ = arg min
jven

[∥∥∥ �M − R̄j
ven

∥∥∥2

2
+ λ

∥∥∥W̄ j
ven

∥∥∥2

2

]
(18)

with ‖u‖2 the discrete L2 norm. The additional of the second term in (18) constrains the solution,
depending on the choice of the regularization matrix W̄ and the corresponding parameter λ [5, 12, 14].

Solving the above minimization system with the first differentiation with respect to j
ven

gives the
following expression:

j
ven

=

⎡
⎣

⎡
⎣ ∑

d=x,y,z

(R̄)Td R̄d + λ(W̄ )Td W̄d)

⎤
⎦
−1⎤

⎦
⎡
⎣ ∑

d=x,y,z

[
(R̄)Td Md

]⎤⎦ (19)

The indexes d and T refer respectively to the direction (x, y or z) and the transposed matrix.
The divergence of the primary current

−→
jp using the discrete load distribution can be expressed by

the following:

div
−→
jp =

k∑
v=1

j
ven

δ (�r − �rv) (20)

∫
Ω

ϕdiv
−→
jpdΩ =

k∑
v=1

j
ven

∫
Ω

ϕδ (�r − �rv) dΩ (21)

here the term δ(�r − �rv) is equal to 1 when the position of the node �r corresponds to neighboring FE
node �rv and to zero otherwise, and the function ϕ is either one or null. The rhs for this method, in our
study, is defined only on the neighbouring FE nodes around the dipole’s position as shown in Fig. 4.

Figure 3. The arrow is the dipole; the dots are
the nodes of the tetrahedral element, where the
source term is distributed with the direct method.

Figure 4. Example on 2D, the arrow is
the dipole; the dots are the nodes where the
monopoles are distributed with the Venant’s
method.

5. RESULTS IN SPHERICAL HEAD MODEL

The head model is discretized by a regular tetrahedral mesh of 115734 elements and 20320 nodes using
iso2mesh [18]. We compute the Joe-Liu mesh parameter [19] which measures the mesh quality, the
average value of quality is 84%.

An equivalent current dipole has been selected to represent the electrical activity in the brain
region, with the moment magnitude of M = 1nA·m placed on the z-axis, with various positions and
orientations.

The potential distribution is evaluated on the 1425 surface’s nodes. These nodes are localized by
their elevation angle θ ∈ [−π

2 ,+π
2 ] and the azimuthally orientation ∅ ∈ [0, 2π]. The θ = 0 corresponds
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(a) (b)

Figure 5. View of the mesh; the θ and ∅, (a) a radial dipole and (b) a tangential dipole.

to the plane defined by the x and y axes and ∅ = 0 to the plane defined by the x and z axes. Fig. 5
illustrates a view of the mesh, the representation of radial and tangential dipoles and an example of θ
and ∅.

5.1. Potential Distribution on the Outer Surface of the Spherical Model

Figure 6 shows the potential distribution on the nodes of the outer sphere, obtained with the Saint
Venant’s method, and the numerical (*Vfem) and analytical (◦Vana) solutions are plotted on the same
graph as shown.
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Figure 6. Analytical (◦Vana) and numerical solution (*Vfem) on all surface’s nodes versus the theta
angle (radian), (b) shows the result for a centered radial dipole, (a) those for a centered tangential
dipole.

For the radial and tangential dipole, the numerical solution is identical to the analytical solution on
each node; a similar potential’s distribution is obtained with the others methods (direct and subtraction).

5.2. Comparison and Discussion of the Results

The errors between the numerical and analytical solutions are evaluated with different measures of
similarity [2, 5–7]: the Relative Difference Measure (RDM) and Magnitude factor (MAG) are used,
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respectively, for changes in the topography and the magnitude between the two solutions. The
correlation (COR) is used as a measure of similarity between two data sets.

RDM
(
V ana, V fem

)
=

∥∥∥∥∥∥
V fem

i∥∥∥V fem
i

∥∥∥ − V ana
i

‖V ana
i ‖

∥∥∥∥∥∥
2

(22)

MAG
(
V ana, V fem

)
=

∥∥∥V fem
i

∥∥∥
2

‖V ana
i ‖2

(23)

COR
(
V ana, V fem

)
=

N∑
i=1

(
V fem

i − V fem
mean

)
(V ana

i − V ana
mean)

√√√√ N∑
i=1

(
V fem

i − V fem
mean

)2

√√√√ N∑
i=1

(V ana
i − V ana

mean)2

(24)

where V fem
i and V ana

i indicate the numerical and the analytical solutions respectively at the node i.
The notations mean indicates the mean value of the associated solution. These criterions are evaluated
for various dipole positions and orientations. Table 1 (and Table 2) present the results obtained for a
radial dipole (and a tangential dipole) with various eccentricities along the z-axis.

For the first head model hm1, the interface brain-csf is located at r = 63 mm. According to
the above results, we note that for the source located deep inside the brain layer, at r < 55 mm, the
subtraction method and the Saint Venant’s method show the best RDM, both for the tangential and
the radial orientations. For these positions, the direct approach has the largest errors. The MAG

Table 1. Results for radial dipole on different positions along the z-axis.

hm1
�����������Method

Position
0mm 30mm 55mm 62 mm 62.5 mm 63 mm

RDM (%)

Direct 2.05 1.23 2.48 1.64 1.34 6.29

Subtraction 0.02 0.18 1.86 16.15 16.80 17.11

St Venant 0.24 0.53 0.45 0.72 7.02 6.79

MAG

Direct 0.99 1.00 0.99 1.01 1.00 0.74

Subtraction 1.00 1.00 1.07 24.55 31.18 29.28

St Venant 1.00 1.00 1.01 0.79 10.96 13.31

COR (%)

Direct 99.88 99.95 99.84 99.93 99.95 98.05

Subtraction 100 99.99 99.90 93.49 92.98 92.75

St Venant 99.99 99.99 99.99 99.98 98.83 98.91

Table 2. Results for tangential dipole on different positions along the z-axis.

hm1

�����������Method
Position

0mm 30mm 55mm 62 mm 62.5 mm 63 mm

RDM (%)

Direct 0.36 1.71 0.99 1.19 1.43 4.12

Subtraction 0.02 0.15 1.13 8.62 4.57 3.52

St Venant 0.18 0.56 1.10 0.76 34.10 22.16

MAG

Direct 1.00 1.00 1.00 1.00 0.99 1.99

Subtraction 1.00 1.00 1.01 1.22 1.60 2.17

St Venant 1.00 1.00 1.01 1.00 1.53 1.70

COR (%)

Direct 99.99 99.94 99.98 99.97 99.95 98.15

Subtraction 100 99.99 99.97 98.95 98.67 98.78

St Venant 99.99 99.99 99.97 99.98 81.58 90.06
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error is bounded between 0.99 and 1.01. The variations are not important, and no big differences are
noted between the three approaches. The coefficient correlation (COR) shows good values for the three
methods for these source locations.

When the source is located between 55mm ≤ r ≤ 62 mm, the subtraction method loses its accuracy,
the RDM rises, whereas the Venant’s method and the direct methods remain stable. The MAG and
COR follow the same trend as the RDM.

For the most eccentric source’s positions, located between 62mm < r < 63 mm the Saint Venant’s
method also loses its performance. Moving the dipole from 62 mm to 62.5 mm induces RDM jumps from
0.72% to 7.02% in the case of a radial orientation. The jump of errors is observed for the tangential
orientation as well. A relative stability for the direct method is observed.

As regards to the sources on the interface, r = 63 mm, all the three approaches give bad results.
Similar observations are highlighted in the previous publications, the numerical errors rise when the
dipole approaches the interface [5, 7, 10, 17].

The majority of the sources are located in the cortex, i.e., the real position of the dipole is often
close to the interface, the accuracy of results in this situation is very important. However, in these
positions important errors are observed for all the studied methods. To deal with this problem, in this
article, we introduce an original modification on the saint Venant’s method for the dipoles located near
the interface, and this modification is based on the “Venant’s Condition” described in the following
section.

6. THE MODIFIED SAINT VENANT’S METHOD

Based on the “Venant Condition”, namely no sources should be placed in other than grey matter
compartments [14, 16, 17, 20], and due to the stability of its results as shown in Table 1 and Table 2.
The monopoles distribution is investigated.

6.1. Saint Venant’s Monopoles Distribution

In the traditional Saint Venant’s approach, the monopoles are distributed on all the neighbouring nodes
around and close to the dipole’s position, as shown in Fig. 5. For the dipole located near the interface,
some of the neighbour monopoles could be located on different layers. From the previous results shown
in Table 1 and Table 2, for the dipole’s positions at r = 62 mm and r = 62.5 mm, high jumps on all
criterions of errors are observed for the Saint Venant’s method. In order to investigate the causes of the
sudden increase in error we analysed the locations of the monopoles’, and Table 3 shows the result.

Table 3. Monopoles’ location near the interface.
������������������Monopoles’ localisation

Dipole position
r = 62 mm r = 62.5 mm

In the brain’s layer (σbr = 0.33 Sm−1) 21 20

In the csf’s layer (σcs = 1Sm−1) 9 9

In the skull’s layer (σsk = 0.0042 Sm−1) 3 8

In the scalp’s layer (σsc = 0.33 Sm−1) 0 0

From this table, we observe that there is a set of monopoles located outside of the brain’s layer.
This distribution does not fulfil the “Venant’s Condition” and this could be one of the reasons for the
rising on the error near the interface. In addition, moving the dipole from 62 mm to 62.5 mm implies
high variation on the monopoles number on the skull’s layer; this number passes from 3 monopoles to
8 monopoles. We suppose that the high difference between the conductivity of the brain and the skull
associated with the high number of the monopoles in the skull’s layer is the cause on the increased
errors. Therefore, we propose to calculate the numerical solution by considering only the monopoles
inside the brain layer. We remove all the monopoles outside the brain’s layer, as shown in Fig. 7.

The mathematical procedure to calculate the monopoles’ values is the same as explained in 4.3.
The difference is on the number of the monopoles, their locations and values.



Progress In Electromagnetics Research, Vol. 153, 2015 19

(a) (b)

Figure 7. (a) is the original Saint Venant distribution, (b) is the modified distribution including only
monopoles inside the brain layer.
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Figure 8. Analytical (◦Vana) and numerical (*Vfem) potential distribution for a radial dipole near
the interface. (a) is the result with all monopoles, (b) those for the monopoles located only in the brain
layer.

Table 4. Comparison of the results near the interface brain-csf.

hm1

Position 62 mm 62.5 mm 63mm�����������Orientation
Method

old new old new old new

RDM (%)
Radial 0.72 1.30 7.02 1.19 6.79 3.63

Tangential 0.76 0.91 34.10 1.26 22.16 1.42

MAG
Radial 0.79 1.00 10.96 1.00 13.31 1.00

Tangential 1.00 0.99 1.53 1.00 1.70 0.99

COR (%)
Radial 99.98 99.95 98.83 99.92 98.91 99.65

Tangential 99.98 99.98 81.58 99.97 90.06 99.95

6.2. Results in Four Concentric Spheres

The modified Venant’s method is applied on the hm1 head model for same dipoles’ positions as previous.
Fig. 8 shows an example of the potential distribution on the outer surface’s node for a radial dipole at
the position r = 62.5 mm. The abscissa axis represents the θ angle which is the same as in Section 5.
The first graph shows the result with the standards Venant’s method and the second the results with
the modified method.

In Table 4 the notations “old” and “new” refer respectively to the standard and the modified Saint
Venant’s method.

The results obtained with the modified Saint Venant’s method show good improvements on
potential distribution for the most eccentric sources. On the other hand, we observe a small rising
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on the RDM for the sources at r = 62 mm but significant improvement on the MAG. According to
these results, we can say that the error’ increase is due to the distribution of the monopoles on several
layers with different values of conductivity. Removing the monopoles located outside of the brain layer
improves the numerical solution. This modification allows the validation of the “Venant’s Condition”
formulated in [14, 17]. To further prove this condition, we apply the same methods on the second head
model noted hm2 .

6.3. Results in Three Concentric Spheres Head Model

The head model hm2 consists of three layers. Compared to hm1, the model hm2 does not have a csf’s
compartment. The interface is located at r = 63 mm, and it is between the brain and the skull. Same
simulations as above are evaluated in this model. Table 5 summarizes the errors near the interface and
compares the result with the standard and the modified Venant’s methods.

Table 5. Comparison of the results near the interface brain-skull.

hm2
Position 60 mm 61 mm 62 mm

������������Orientation
Method old new old new old new

RDM (%) Radial 0.65 0.67 2.39 0.95 1.50 1.65
Tangential 0.73 0.58 38.50 0.67 26.41 1.31

MAG
Radial 1.00 1.00 10.47 1.00 26.03 1.00

Tangential 1.00 1.00 2.24 0.99 2.14 0.99

Table 6. Monopoles’ locations versus the dipole position near the interface.
���������������������Monopoles’ localisation

Dipole position
r = 60 mm r = 61 mm

In the brain’s layer (σbr = 0.33 Sm−1) 24 21
In the skull’s layer (σsk = 0.0042 Sm−1) 3 12
In the scalp’s layer (σsc = 0.33 Sm−1) 0 0

In Table 5 important variations of the errors between the dipole positions r = 60 mm and
r = 61 mm are observed with the traditional Saint Venant’s method, therefore the monopoles’ location
is investigated in these positions. Table 6 shows the location of the Saint Venant’s monopoles for these
dipole’s positions. The monopoles number on the skull’s layer increases from 3 to 12 monopoles, as
in the previous case this variation causes the rise in the errors. When these monopoles are removed,
the solution is strikingly improved. These results for this model also prove and validate the “Venant’s
Condition”.

Furthermore, the simulation’ results show that these errors are more important when the difference
between the dipole’s location’s conductivity and the monopole’s location’s conductivity is higher.

6.4. Influence of the Number and the Distribution of Monopoles

In this section, another monopoles’ distribution is investigated, this distribution has more monopoles
than the distribution used in the previous section. We include not only the neighbours nodes to the
dipole, but also those placed close to these neighbours nodes. To make the distinction, we call this
new distribution “second cell” noted “2nd” and the original distribution “first cell” noted “1st”. We
performed the same simulations as previously described. The following tables summarize the obtained
results, respectively, in Table 7 for the hm1 and in Table 8 for the hm2.

With the second cell distribution, the number of the monopoles is increased, the obtained result
shows slight improvement compared with the results of the first cell distribution. The results shown in
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Table 7. Results near/on the interface brain-csf for the two distributions in hm1.

hm1
Position 62 mm 62.5 mm 63 mm

Distribution 1st 2nd 1st 2nd 1st 2nd

RDM (%) Radial 1.30 0.61 1.19 0.77 3.63 1.04
Tangential 0.91 0.86 1.26 1.21 1.42 1.12

MAG
Radial 1.00 1.00 1.00 1.00 1.00 1.00

Tangential 0.99 0.99 1.00 0.99 0.99 0.99

Table 8. Results near/on the interface brain-skull for the two distributions in hm2.

hm2 Position 62 mm 62.5 mm 63 mm
Distribution 1st 2nd 1st 2nd 1st 2nd

RDM (%)
Radial 1.65 1.11 2.21 1.5 4.39 1.94

Tangential 1.31 1.24 1.55 1.7 1.87 1.71

MAG Radial 1.00 1.00 1.00 1.00 1.00 1.00
Tangential 0.99 0.99 0.98 0.98 0.98 0.98

Table 7 are better than all the results of Table 4. These outcomes indicate that taking into account more
monopoles inside the brain’s layer, in the case of high eccentricity, can further enhance the numerical
solution with the modified Venant’s method.

7. CONCLUSION

In this study the finite element method (FEM) is investigated to solve the forward problem and calculate
the scalp’s electrical potential from the dipole current source. The singularity of the source introduced
by the FEM discretization is treated with the direct method, subtraction method and saint Venant’s
method. These methods are investigated in multilayer sphere models with an available analytical
solution. Results show that all methods give good results in the case of sources located deeply inside
the brain’s layer. On the contrary, in the case of sources close to the interface of layers with different
conductivities, the observed results show numerical instability for all approaches.

To deal with this issue, a modification is introduced to the Saint Venant’s method through the
implementation of the so called “Venant Condition”. This condition states that “no monopole should
be placed in other location than grey matter”. Therefore, the modification conserves only the monopoles
inside the brain’s layer in the calculation. The modified Saint Venant’s method gives satisfactory results
and improves both the topography (with the RDM measure) and the magnitude (the MAG measure)
for the sources with highest eccentricities. To further improve the accuracy, a new distribution of
the monopoles of the modified Venant’s method is introduced. With this addition, better results are
obtained compared to the previous methods.

In conclusion, the accuracy of the saint Venant’s method is linked with the monopoles’ positions,
monopoles’ distribution, conductivity values at their locations and their amounts. Preserving only the
Saint Venant’s monopoles in respecting the “Venant’s Condition” allows a significant improvement of
the numerical results for the EEG forward problem.
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