Vol. 55
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-08-14
Time Domain Sparse Representation for Multi-Aspect SAR Data of Targets
By
Progress In Electromagnetics Research Letters, Vol. 55, 15-22, 2015
Abstract
Sparse representation is the fundamental technology of compressive sensing, sparse three-dimensional (3-D) imaging, and dictionary-based parameter estimation. Typical sparse representation models of radar signal work in the frequency domain, which may encounter high dimension and large data amount of dictionary. This paper presents a time-domain (TD) representation model for multi-aspect SAR data. We generate the multi-aspect two-dimensional (2-D) TD responses of the 3-D scattering center model. Then we cut off the low-energy area of the 2-D TD response and use cutoff responses to construct the dictionary of sparse representation. Such a TD dictionary is a sparse matrix. Moreover, we build and solve the sparse representation model based on the TD dictionary. Compared with the frequency-domain (FD) sparse representation model, the data size of our TD dictionary is remarkably lower, and the solving of TD sparse representation problem is in higher efficiency. We utilize the TD sparse representation to reconstruct 3-D images from multi-aspect SAR data. Experimental results demonstrate the effectiveness and efficiency of the TD sparse representation model.
Citation
Jin-Rong Zhong, Gongjian Wen, Conghui Ma, and Bai-Yan Ding, "Time Domain Sparse Representation for Multi-Aspect SAR Data of Targets," Progress In Electromagnetics Research Letters, Vol. 55, 15-22, 2015.
doi:10.2528/PIERL15042405
References

1. Samadi, S., M. Çetin, and M. A. Masnadi-Shirazi, "Sparse representation-based synthetic aperture radar imaging," IET Radar, Sonar, Nav., Vol. 5, No. 2, 182-193, 2011.
doi:10.1049/iet-rsn.2009.0235

2. Herman, M. A. and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Trans. Signal Process., Vol. 57, No. 6, 2275-2284, 2009.
doi:10.1109/TSP.2009.2014277

3. Austin, C. D., E. Ertin, and R. L. Moses, "Sparse signal methods for 3D radar imaging," IEEE Journal of Selected Topics in Signal Processing, Vol. 5, No. 3, 408-423, 2011.
doi:10.1109/JSTSP.2010.2090128

4. Bhattacharya, S., T. R. Blumensath, B. Mulgrew, and M. Davies, "Synthetic aperture radar raw data encoding using compressed sensing," Proc. IEEE 2008 Int. Conf. Radar, 1-5, 2008.

5. Austin, C. D., J. N. Ash, and R. L. Moses, "Dynamic dictionary algorithms for model order and parameter estimation," IEEE Trans. Signal Process., Vol. 61, No. 20, 5117-5130, 2013.
doi:10.1109/TSP.2013.2276428

6. Rigling, B. D. and R. L. Moses, "Three-dimensional surface reconstruction from multi-static SAR images," IEEE Trans. Image Process., Vol. 14, No. 8, 1159-1171, 2003.
doi:10.1109/TIP.2005.851690

7. Corporation, H. P., "Sparse representation denoising for radar high-resolution range profiling," Int. J. Antennas Propagat., Vol. 13, No. 1, 479-482, 2014.

8. Zhu, S., A. Mohammad-Djafari, H. Wang, B. Deng, L. Xiang, and J. Mao, "Parameter estimation for SAR micromotion target based on sparse signal representation," EURASIP J. Advances Signal Process., Vol. 13, No. 2, 26-26, 2012.

9. Zhu, X. X. and R. Bamler, "Tomographic SAR inversion by L1-norm regularization: The compressive sensing approach," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 10, 3839-3846, 2010.
doi:10.1109/TGRS.2010.2048117

10. Potter, L. C., D. M. Chiang, R. Carriere, and J. Gerry, "A GTD-based parametric model for radar scattering," IEEE Trans. Antennas Propagat., Vol. 43, No. 11, 1058-1067, 1995.
doi:10.1109/8.467641

11. Kim, S. J., K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, "A method for large-scale l1-regularized least squares," IEEE Journal of Selected Topics in Signal Processing, Vol. 1, No. 4, 606-617, 2007.
doi:10.1109/JSTSP.2007.910971

12. http://web.stanford.edu/~boyd/l1_ls/, , .