
Progress In Electromagnetics Research Letters, Vol. 55, 15–22, 2015

Time Domain Sparse Representation for Multi-Aspect
SAR Data of Targets

Jinrong Zhong*, Gongjian Wen, Conghui Ma, and Baiyuan Ding

Abstract—Sparse representation is the fundamental technology of compressive sensing, sparse three-
dimensional (3-D) imaging, and dictionary-based parameter estimation. Typical sparse representation
models of radar signal work in the frequency domain, which may encounter high dimension and large data
amount of dictionary. This paper presents a time-domain (TD) representation model for multi-aspect
SAR data. We generate the multi-aspect two-dimensional (2-D) TD responses of the 3-D scattering
center model. Then we cut off the low-energy area of the 2-D TD response and use cutoff responses to
construct the dictionary of sparse representation. Such a TD dictionary is a sparse matrix. Moreover,
we build and solve the sparse representation model based on the TD dictionary. Compared with the
frequency-domain (FD) sparse representation model, the data size of our TD dictionary is remarkably
lower, and the solving of TD sparse representation problem is in higher efficiency. We utilize the TD
sparse representation to reconstruct 3-D images from multi-aspect SAR data. Experimental results
demonstrate the effectiveness and efficiency of the TD sparse representation model.

1. INTRODUCTION

Sparse representation of radar signals [1] is the fundamental for many other techniques, such as
compressed sensing [2], sparse 3-D imaging [3], data compression [4], and dictionary-based parameter
estimation [5]. Multi-aspect SAR data are a typical collecting geometry of radar [6]. Sparse
representation of multi-aspect SAR data is of significance.

The existing sparse representation models [1–5] for radar signal are established in the frequency
domain. In other words, these sparse representation methods built the dictionary and solved the
model in the frequency domain. Based on frequency-domain (FD) sparse representation model, many
achievements [1–5, 7, 8] have been made in the files of 3-D imaging and feature extraction. However,
the larger data amount of the dictionary, accompanied with a huge computation, is always a significant
challenge.

For the sparse representation problem of multi-aspect SAR data, this paper proposes a time-domain
(TD) model, which constructs the dictionary in the time domain and solves the sparse representation
problem in time domain too. We use 2-D time responses of the 3-D scattering center model at every
aspect to construct the dictionary. Since the energy of 2-D TD responses concentrates on several small
regions, we cut off the low-energy areas to make the TD dictionary become a sparse matrix. Moreover,
the signal to noise rate (SNR) of the valid regions increases in the time domain. So the time domain
sparse representation reduces the data amount of dictionaries substantially and improves the searching
efficiency. Apply the proposed TD sparse representation to the multi-aspect SAR data of 3-D imaging.
The experimental results demonstrate that TD sparse representation is effective and exhibit its efficiency.
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Figure 1. Multiple-aspect SAR collecting geometry. (a) Collecting geometry. (b) Fractions in
wavenumber coordinate system.

2. MULTI-ASPECT COLLATED SAR DATA

The multi-aspect collected geometry is depicted in Figure 1. At the observed angle (φ, θ), the radar
received signal is r(t; θ, φ) = [

∫∫∫
Λ g(x, y, z; θ, φ)dxdydz ] ∗ s(t), and s(t) is the sent signal, ∗ the

convolution. Using the signal model presented by Austin et al. in [3], interpret multi-aspect SAR
data in the 3-D Fourier transformation G(wx, wy, wz) of the reflectivity function g(x, y, z;φ, θ). As can
be seen below, our method does nothing matter with the polarization, and we take single polarization
in consideration only. The signal model in Fourier transformation is given by

G(wx, wy, wz) =
N∑

n=1

g(x, y, z;φ, θ) · e−j(xnwx+ynwy+znwz) (1)

Suppose that the center frequency of k-th aspect is fc,k, the bandwidth Bk, and the aperture
φ̄k, k = 1, . . . , K. By the projection-slice theorem, each aperture is a fraction in G(wx, wy, wz).
Denote the k-th fraction’s sample point set as Mk = {(fj , φi)}Nf k,Mf k

j=1,i=1 . The coordinates in wavenumber

domain are wj,i,k
x = −4πfj cos θi,k cos φi,k/c, wj,i,k

y = −4πfj cos θi,k sinφi,k/c, wj,i,k
z = −4πfj sin θi,k/c.

Reshape them into a vector HM = ∪K
k=1HM,k = {�m}M

m=1, M =
∑K

k=1 Mk, and the m-th coordinate is
�m = (wx,m, wy,m, wz,m).

Denote the multi-aspect SAR dataset as D̃ = {D̃k}K
k=1, and D̃k = [G(wj,i,k

x , wj,i,k
y , wj,i,k

z )]Mf k,Nf k
i=1,j=1 is

the k aspect fraction. Transform D̃k into a 2-D SAR complex image and denote it as Dk ∈ CMzk×Nzk ,
which can be viewed as 2-D time domain data. Mzk and Nzk are the row and column numbers.

3. FREQUENCY DOMAIN SPARSE REPRESENTATION

Sample 3-D imaging space Q into a series of 3-D locations as candidate locations,

QM = {λ̄1, . . . , λ̄N} = {(xn, yn, zn)}N
n=1 (2)

Usually QM is chosen on a uniform rectilinear grid. The grid point number is N . Take the isotropic
point scattering center (IPS) model to construct the dictionary and sparse representative the target.
The dictionary is built in the frequency domain, using the FD responses of IPS

Ỹ = F (HM ,QM ) =
[
e−j(xnwx,m+ynwy,m+znwz,m)

]
m,n

(3)

where m indexes the M measured frequency (or wavenumber) domain down rows, and n indexes the
location across columns. Based on Ỹ, the vectored measured data can be approximated as

d̃ = Ỹ · s + ṽ (4)
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where d̃ ∈ CM×1 is vectored from the multi-aspect SAR data, and ṽ is the noise. s is a sparse N -
dimensional vector and also the scattering amplitude vector. ŝ is the solution of the sparse optimization
problem

ŝ = arg min ‖s‖0 s.t.
∥∥∥Ỹs − d

∥∥∥
2

< ε (5)

4. TIME DOMAIN SPARSE REPRESENTATION

The 3-D scattering center models have a natural characteristic: the amplitudes of its 2-D response at
every aspect are well distributed in the frequency domain while the amplitudes are uneven in the time
domain. We develop a TD sparse representation model, exploiting such a property.

As presented above, for a location λ̄n = [xn, yn, zn]T in QM , the 2-D FD response at the k aspect
is

Ẽ(HM,k|λ̄n) =
[
exp

[
−j

(
xnwi,j

x,k + ynwi,j
y,k + znwi,j

z,k

)]]Mf k,Nf k

i=1,j=1
(6)

Ẽk,n = Ẽ(HM,k|λ̄n) is a Mf k × Nf k matrix. Interpolate and transform Ẽn to the time domain

Ek,n = F−1
2 · B · Ẽk,n (7)

Here, F−1
2 (·) represents the 2-D inverse fast Fourier transform (IFFT), and B represents interpolate

the 2-D sector data into rectangular data. Figure 2 shows an example of the 2-D frequency/time domain
responses at the k aspect. It can be found that the energy of TD response, Ek,n = [ei,j,k]

Mzk×Nzk
i=1,j=1 ,

concentrates in a small region. The other big region is lower than −50 dB of the peak-power. This
characteristic does not depend on the measurement data, but a natural characteristic scattering center
model. We cut off the small amplitude regions

ei,j,k =
{

0 |ei,j,k| < ξn

ei,j,k else (8)

Here, ξn is an adaptive threshold. Its value is determined by equation ξn = max(|Ek,n|) · 10βd/20.
max(|Ek,n|) is the maximum amplitude of Ek,n. βd(βd < 0) is an experiential threshold for the
whole dictionary. Write such processing in the form of an operator, E∗

k,n = Γβd(Ek,n). We stack
the cutoff 2-D response E∗

k,n into a vector denote as ψk,n = vec(E∗
k,n) = [ϕ1,n, . . . , ϕMk ,n]T . It is the

component of λ̄n at the k-th aspect. We express the process of getting ψk,n in the form of operators,
ψk,n = vec ·Γβd ·F−1

2 ·B · Ẽk,n. The k part of the TD dictionary, Yk, consists of all the ψk,n at k aspects
for all λ̄n, n = 1, . . . , N . After obtaining all the K parts, we construct the dictionary of QM for the
multi-aspect SAR data as

Y =

⎡
⎣

Y1
...

YK

⎤
⎦ (9)
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Figure 2. 2-D frequency/time domain responses of 3-D scattering center model at someone aspect.
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When βd > −∞, Y is a sparse 2-D matrix. Suppose that Q is the number of nonzero elements
and that η = Q/(M · N) is the proportion of nonzero elements and indicates the sparse degree of the
dictionary matrix. The larger βd is, the smaller η is, and the sparser is Y, which is beneficial to reducing
the data size of dictionaries. In addition, Y being a sparse matrix, is beneficial to reducing the burden
of computation.

Interpolate and transform D̃k to the time domain, and then stack it into a Mk-dimensional vector
dk = [d, . . . , dm, . . . , dMk

]T = vec · F−1
2 · B · D̃k. So, the measured data can be approximated as

d = Ys + v, here, d =

⎡
⎣

d1
...

dNap

⎤
⎦ (10)

where v is TD noise vector, s a sparse vector, and d the vectored multi-aspect SAR TD data. According
to the time-frequency duality principle, as βd = −∞ (in other words, the time-domain dictionary is
not cut off), the FD model (4) and TD model (10) are equivalent. Also, their solutions should be the
same. As βd ≥ −∞, due to truncation processing, which make the dictionary loss energy and rice the
atomic correlation, the solutions of the model (4) and model (10) may be different. But it cannot assert
that the convergence and accuracy of model (10) is inferior to model (4). Because the energy of target
responses congregates in TD, the SNR rises in the active area. And the truncation not only cut off
signals in the dictionary, but also cut off the noise in the measurement data covertly. These factors are
conducive to the solution. Solve the sparse optimization problem to obtain ŝ∗,

ŝ∗ = arg min ‖s‖0 s.t. ‖Ys − d‖2
2 < ε (11)

Since l0-regulated optimization is hard to solve, we take the l1-regulated technique [9, 11] to deal with
problem (11)

ŝ∗ = arg min
{
‖Ys− d‖2

2 + λ ‖s‖1

}
(12)

5. EXPERIMENTAL RESULTS

We use the TD sparse model to representative multi-aspect SAR data simulated by GTD [10] model,
then compare the performances of TD model with the FD model. The performances include validity and
efficiency. In order to demonstrate the validity of the TD sparse representation, we compare the sparse
solutions, scattering center locations and the reconstructed 2-D SAR images with the FD method. In
order to demonstrate the efficiency, we compare their dictionaries’ data size and time consumption of
solving.

The simulated complex target consists of 11 scattering centers, which are located in range
Q = {x, y, z| − 2 < x < 2,−2 < y < 2, 0 < z < 1}. The locations of them are listed in Table 1.
Use GTD-based scattering center model [10] to produce multiple-aspect SAR data

G(wx, wy, wz) =
P∑

i=1

Ai · (jf/fc)αi · e−j(xiwx+yiwy+ziwz) + v

Table 1. The locations of target’s 11 scattering centers.

Index [x, y, z] Index [x, y, z]
1 [−1.727, 0.890, 0.771] 7 [1.598, −0.499, 0.512]
2 [0.975, 0.750, 0.635] 8 [−1.727, 0.250, 0.771]
3 [0.975, 0.499, 0.635] 9 [1.598, 0.8895, 0.512]
4 [0.975, −0.499, 0.635] 10 [−1.727, −0.250, 0.771]
5 [−1.727, −0.890, 0.771] 11 [0.499, 0.044, 0.685]
6 [1.598, 0.499, 0.512] 12
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Ai is randomly generated, and frequency-dependent factor αi is set to one of [−1,−1/2, 0, 1/2, 1]
randomly. Produce SAR data at five aspects (θk, φk). The azimuths are φk = 5◦, k = 1, . . . , 5,
and the elevations are θ1 = 22.5◦, θ2 = 23.5◦, θ3 = 24.5◦, θ4 = 25.5◦, θ5 = 27.5◦. The sample intervals
are Δf = 30 MHz and Δφ = 0.1◦. Add zero-mean white Gaussian noise v ∼ N(0, σ2

v) to make the FD
SNRFd = −10 dB, TD SNRimg = 20 dB. The five SAR images with noise are shown in Figure 3, and
the dynamic range for display are [−40, 0] dB.

Take intervals Δx = 0.1 m, Δy = 0.1 m, Δz = 0.1 m to grid the 3-D space Q into a set of 3-D
locations, N = 18491 locations in total. So, the sparse dictionaries’ demotion is M ×N = 4420×18491.
Construct the TD dictionary with a threshold βd = −50 dB. The proportion of nonzero elements is
η = 7.1%. It is lower than a FD dictionary in an order of magnitude. Solve the sparse representation
problem d̃ = Ỹ · s + ṽ and d = Y · s + v. The sparse vectors ŝ and ŝ∗ are shown in Figure 4. Their
corresponding locations are shown in Figure 5. As an example, we use ŝ∗ to reconstruct the SAR image
at (θ1 = 25.5◦, φk = 5◦) by Y · ŝ∗ directly, then use ŝ to rebuild the FD SAR data and turn it into
image-domain. The reconstructed images are shown in Figure 6.

From Figure 4, it can be seen that ŝ∗ is convergent to the real sparse vector. There is little difference
between sparse vectors ŝ and ŝ∗. Figure 5 confirms such a judgment. Since the scattering centers are not
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Figure 3. The simulated five-aspect SAR images.
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Figure 4. Sparse vectors ŝ and ŝ∗.
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Figure 6. The reconstructed SAR images.

right on the grid, the nonzero elements are located around the real scattering centers. The color is the
value of the nonzero elements, also is the amplitude locations. They are can be viewed as 3-D images of
the simulated target. We can see that the two almost identical images are reasonable. Both the TD and
FD dictionary sparse representations can availably represent the target. In Figure 6, the reconstructed
SAR images are with less noise. The first one is reconstructed by TD sparse representation, and it is
0.958 similar to the original noise-free SAR complex image. The second one is reconstructed by FD
sparse representation, and its similarity is 0.958. The formula to calculate the similarity is

μ = (ê − e)H · (ê − e) /
(
eH · e)

From the results presented above, it can be said that the TD sparse representation is efficacious.
Below, we discuss the efficiency. First, as mentioned above, compared with the FD dictionary,

the data size of our TD dictionary reduces 92.9%. Second, we examine the computation complexity
of solving our sparse representation problem, in comparison with the FD one. In this experiment, we
use the method proposed by Kim et al. for l1-regularized least squares in [11] to solve the TD and FD
sparse representation problems. The corresponding l1 ls Matlab solver is presented in [12]. The TD
sparse representation costs 62.3 seconds in total to obtain the solution. In detail, it needs 46 iterations,
and each iteration has to take 11.7 preconditioned conjugate gradient (PCG) iterations in average. The
FD sparse representation requires 72 iterations, and each iteration has to take 34.5 PCG iterations in
average. It costs 843.4 seconds in total. Even if we do not cut off the TD dictionary, set βd = −∞, the
two models are perfectly equivalent. The TD sparse representation costs 376.3 seconds, which is less
than the FD model. The large number of elements in the TD dictionary contribute to the increase in
efficiency. One reason for such a contribution is that the multiplication of Ys requires fewer multiplies.
Besides, we find that there is another reason, i.e., TD sparse representation has advantages in avoiding
noise jamming. As the low-energy area of the responses in the TD dictionary are cut off, it is equivalent
to removing most noise of the measured data in the solving process. The fundamental mechanism can
be abstractly and briefly explained as following. For the sparse representation, we have to search the
solution that makes Δ = ||d−Ys||22 +λ||s||1 reach its minimization. When the locations of the nonzero
elements in s are fixed, the zero-area of Ys, denoted as [Ys]0, is the noise area determined by the
optimization algorithm automatically. ||[d]0 − [Ys]0||22 = c is a constant, which is helpful to smoothing
the cost-function, excluding the impact of noise on the optimization iterating. As the nonzero elements
in s change, it is equivalent to adaptively redesignating the target region and noise area. After each
iteration, the iterated s approaches the truth solution. The separation of target regions and noise area
becomes more and more reasonable. Compared with denoising by directly truncating noise area in
the image domain, this embedding method is advantageous. The noise is removed more accurately.
It may accelerate the convergence rate of the optimization and can be demonstrated by the iterative
situation in simulation results. We have noticed that the time consumption of solving the TD sparse
representation problem is much less than the FD one. We use apagoge to prove that the cost function
becomes smooth. We make a hypothesis that the only reason of the increase in efficiency is that less
multiplies are needed. If this hypothesis is true, the time consumption of every iteration will reduce,
but the iteration number will not. However, in our experiment, not only the time consumption reduces,
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Figure 7. The relative surrogate duality gaps of TD method and FD method.

but also the iteration number decreases. We plot the relative surrogate duality gaps of TD method and
FD method again in Figure 7 with an enlarged subplot. It suggest that the cost function is smoothed.
Furthermore, we try to explain the mechanism in detail by theoretical analysis. Suppose that Ỹ is the
FD dictionary. As d = e + v, the searching for the minimum will be interfered noise v.

Δ(s) =
∥∥∥d− Ỹs

∥∥∥2

2
+ λ||s||1

We index the iteration times with it and suppose that the desired search direction at current point
sit is ∇0

it

Δ0
(
sit + ∇0

it

)
=

∥∥∥e − Ỹ
(
sit + ∇0

it

)∥∥∥2

2
+ λ

∥∥∥sit + ∇0
it

∥∥∥
1

Due to the noise, there may be another disturbance direction ∇∗
it that makes Δ(sit + ∇∗

it) ≤
Δ(sit + ∇0

it). This is probabilistic. The larger is the noise, the greater is the probability. In
our TD model, we transform Ỹ into TD first. Y∗ is the un-cutoff time-domain dictionary and
Δ(sit) = ||d − Y∗sit||22 + λ||sit||1. Suppose that [Y∗sit]Lit is the low energy area of Y∗sit, in which
the elements will be set to zero. [Y∗sit]Γit is the high energy area, in which the elements maintain the
original values. [·]Lit ∩ [·]Γit = ∅. We rewrite Δ1(sit) = ||d −Y∗sit||22 as,

Δ1 = ‖d− Y∗sit‖2
2 =

∥∥∥[d]Lit + [dit]Γit − [Y∗sit]
L
it − [Y∗sit]

Γ
it

∥∥∥
2

=
∥∥∥[d]Lit − [Y∗sit]

L
it

∥∥∥2

2
+

∥∥∥[d]Γit − [Y∗sit]
Γ
it

∥∥∥2

2
+ 2

(
[d]Lit − [Y∗sit]

L
it

)H (
[d]Γit − [Y∗sit]

Γ
it

)

Here, [·]Lit and [·]Γit are determinate according to Y∗sit adaptively. [d]Lit represents that the elements in d
corresponding to the low-energy area [·]Lit remain, and the rest are set to zero. [d]Γit represents that the
elements in d corresponding to the area [·]Γit. Since [·]Lit ∩ [·]Γit = ∅, ([d]0it − [Ys]0it)

H([d]Γit − [Ys]Γit) = 0,
so Δ1(sit) = ||[d]Lit − [Y∗sit]Lit||22 + ||[d]Γit − [Y∗sit]Γit||22. Then,

Δ(sit) =
∥∥[d]Lit − [Y∗sit]Lit

∥∥2

2
+

∥∥[d]Γit − [Y∗sit]Γit
∥∥2

2
+ λ ‖sit‖1

The SNR of [d]Γit is higher than the SNR of [d]Lit, and the convergence of ||[d]Γit − [Y∗sit]Γit||22 should
be better than |[d]Lit − [Y∗sit]Lit||22. In our TD method, we set [Ys]Lit = 0. [·]Lit can also be expressed as
[·]0it.

Δ(sit) =
∥∥[d]0it

∥∥2

2
+

∥∥[d]Γit − [Y∗sit]Γit
∥∥2

2
+ λ ‖sit‖1

If [·]0it+1 is not changed, ||[d]0it||22 = |[d]0it+1||22 is a constant, which will not affect the searching of
descent direction. If [·]0it+1 is changed, for a right descent direction ∇it, |[d]0it||22 ≤ [d]0it+1||22 must be
true. The convergence of ||[d]0it||22 keeps synchronous with ||[d]Γit− [Y∗sit]Γit||22. When sit is far away from
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the real solution s, it is important and benefitial to the convergence of Δ(s). Of course, when sit has
been very close to the real solution s, the convergence speed of ||[d]Γit− [Y∗sit]Γit||22 will be slower than the
original ||d − Y∗sit||22. Because at such case, ||[d]0it − [Y∗sit]0it||22 will also converge to a minimum s. In
other words, the descent directions of ||[d]0it − [Y∗sit]0it||22 and ||[d]Γit − [Y∗sit]Γit||22 may be the same with
great probability, and ||[d]0it+1 − [Y∗sit+1]0it+1||22 ≤ |[d]0it|22. So, it can be forecasted that the convergence
speed of our TD model is slower than the FD one when sit is close to s since some signal is lost as we set
[Y∗sit]0it = 0. However, at the beginning of the iteration, sit is far from s, and the convergence speed of
our TD model is faster. The descent directions keep the same as the noiseless case ||e−Ỹsit||22 +λ||sit||1
with great probability when the effect of most of the noise is dispelled. As a comprehensive effect, the
convergence speed and time consumption of our TD model are superior to the FD one, which has been
exhibited in our experiment. When βd = −∞, there is no truncation, but a large number of elements
in the TD dictionary approach zero. Therefore, the TD sparse representation also has such a character.

6. CONCLUSIONS

This paper proposes a concept of TD sparse representation for multi-aspect SAR data and presents
the method of constructing TD dictionary and solving TD sparse representation problem. Compared
with the FD model, the data size of the TD dictionary consisting of truncated 2-D TD responses is far
smaller. And it improves the convergence speed of the optimization algorithm. Experimental results
show that the TD sparse representation is available, and its effectiveness is considerably advanced.
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